Skip to main content
Log in

Lubrication Mechanisms Between Parallel Rough Surfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This paper presents a numerical analysis of the hydrodynamic pressure build-up between parallel surfaces. According to the Reynolds theory, it is not possible to generate a pressure between flat parallel sliding surfaces. However, experimental results demonstrate that mechanical seal surfaces can be separated by a full fluid film if the sliding speed is high enough. Several theories, including the roughness effect, have been proposed to explain this unexpected lift-off. A real demonstration of the roughness induced pressure generation has only recently been made possible with the development of deterministic mixed lubrication models. It is demonstrated that a transverse pumping mechanism that varies from place to place with the surface topography can explain the pressure build-up. A simplified model is proposed to include the transverse pumping and to simulate the roughness induced pressure generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Adjemout, M., Brunetiere, N., Bouyer, J.: Numerical analysis of the texture effect on the hydrodynamic performance of a mechanical seal. Surf. Topogr.: Metrol. Prop. 4(1), 014002 (2016). https://doi.org/10.1088/2051-672X/4/1/014002

    Article  Google Scholar 

  2. Ayadi, K., Brunetière, N., Tournerie, B., Maoui, A.: Experimental and numerical study of the lubrication regimes of a liquid mechanical seal. Tribol. Int. 92, 96–108 (2015). https://doi.org/10.1016/j.triboint.2015.05.022

    Article  Google Scholar 

  3. Bayada, G., Faure, J.: A double scale analysis approach of the reynolds roughness—comments and application to the journal bearing. J. Tribol. 111(2), 323–330 (1989)

    Article  Google Scholar 

  4. Bayada, G., Martin, S., Vasquez, C.: An average flow model of the reynolds roughness including a mass-flow preserving cavitation model. J. Tribol. 127(4), 797–802 (2005)

    Article  Google Scholar 

  5. Brunetière, N., Tournerie, B., Minet, C.: On the roughness induced hydrodynamic pressure in mechanical face seals. In: 21st International Conference on Fluid Sealing, pp. 103–113. BHRGroup, Milton Keynes (2011)

  6. Denny, D.: Some measurements of fluid pressures between plane parallel thrust surfaces with special reference to radial-face seals. Wear 4, 64–83 (1961)

    Article  Google Scholar 

  7. Flitney, R., Nau, B.: Performance testing of mechanical seals. In: Nau, B. (ed.) 13th International Conference on Fluid Sealing, pp. 441–466. BHR Group, Kluwer Academic Publishers, Brugge (1992)

    Chapter  Google Scholar 

  8. Francisco, A., Brunetière, N.: A hybrid method for fast and efficient rough surface generation. J. Eng. Tribol. J 230(7), 747–768 (2016). https://doi.org/10.1177/1350650115612116

    Article  Google Scholar 

  9. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. (Lond.) A295, 300–319 (1966)

    Google Scholar 

  10. Gropper, D., Wang, L., Harvey, T.J.: Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings. Tribol. Int. 94, 509–529 (2016). https://doi.org/10.1016/j.triboint.2015.10.009

    Article  Google Scholar 

  11. Hamilton, D., Walowit, J., Allen, C.: A theory of lubrication by micro-irregularities. J. Basic Eng. 88, 177–185 (1966)

    Article  Google Scholar 

  12. Hamrock, B., Dowson, D.: Ball Bearing Lubrication—The Elastohydrodynamics of Elliptical Contacts, p. 047103553X. Wiley, New York (1981)

    Google Scholar 

  13. Harp, S., Salant, R.: An average flow model of rough surface lubrication with inter-asperity cavitation. J. Tribol. 123(1), 134–143 (2001)

    Article  CAS  Google Scholar 

  14. Hill, I., Hill, R., Holder, R.: Fitting johnson curves by moments. Appl. Stat. 25, 180–189 (1976)

    Article  Google Scholar 

  15. Hu, Y., Tonder, K.: Simulation of 3-d random rough surface by 2-d digital filter and fourier analysis. Int. J. Mach. Tools Manuf. 32(1/2), 83–90 (1992)

    Article  Google Scholar 

  16. Kane, M., Bou-Saïd, B.: Comparison of homogenization and direct techniques for the treatment of roughness in incompressible lubrication. J. Tribol. 126(4), 733–737 (2004)

    Article  Google Scholar 

  17. Lebeck, A.: Parallel sliding load support in the mixed friction regime. Part 1—the experimental data. J. Tribol. 109(1), 189–195 (1987)

    Article  Google Scholar 

  18. Lebeck, A.: Parallel sliding load support in the mixed friction regime. Part 2—evaluations of the mechanisms. J. Tribol. 109(1), 196–205 (1987)

    Article  Google Scholar 

  19. Lebeck, A.: Principle and Design of Mechanical Face Seals. Wiley, New York (1991)

    Google Scholar 

  20. Lebeck, A.: Mixed lubrication in mechanical face seals with plain faces. J. Eng. Tribol. J 213(J3), 163–175 (1999)

    Google Scholar 

  21. Lubbinge, H.: On the lubrication of mechanical face seals. Ph.D. thesis, University of Twente, Netherlands (1999)

  22. Minet, C., Brunetière, N., Tournerie, B.: A deterministic mixed lubrication model for mechanical seals. J. Tribol. 133(4), 042203 (2011). https://doi.org/10.1115/1.4005068

  23. Minet, C., Brunetière, N., Tournerie, B.: On the lubrication of mechanical seals with rough surfaces: a parametric study. J. Eng. Tribol. J 226(12), 1109–1126 (2012)

    Google Scholar 

  24. Nau, B.: Hydrodynamic lubrication in face seals. In: BHRA, (ed.) 3rd International Conference on Fluid Sealing, Paper E5, pp. 73–120. BHRA, Cambridge (1967)

    Google Scholar 

  25. Nau, B.S.: Hydrodynamics in face seal films. In: 2nd International Conference on Fluid Sealing, paper F5, pp. 61–80. BHRA, Cranfield, England (1964)

  26. Nyemeck, A., Brunetière, N., Tournerie, B.: A multiscale approach to the mixed lubrication regime: application to mechanical seals. Tribol. Lett. 47(3), 417–429 (2012)

    Article  CAS  Google Scholar 

  27. Pape, J.: Fundamental research on a radial face seal. ASLE Trans. 11(4), 302–309 (1968)

    Article  Google Scholar 

  28. Patir, N., Cheng, H.: An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J. Lubr. Technol. 100(1), 12–17 (1978)

    Article  Google Scholar 

  29. Patir, N., Cheng, H.: Application of average flow model to lubrication between rough sliding surfaces. J. Lubr. Technol. 101(2), 220–230 (1979)

    Article  Google Scholar 

  30. Reynolds, O.: On the theory of lubrication and its application to mr. beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Philos. Trans. R. Soc. Lond. 177, 157–234 (1886)

    Article  Google Scholar 

  31. So, H., Chen, C.: Effects of micro-wedges formed between parallel surfaces on mixed lubrication—part i: experimental evidence. Tribol. Lett. 17(3), 513–520 (2004). https://doi.org/10.1023/B:TRIL.0000044499.67099.74

    Article  Google Scholar 

  32. So, H., Chen, C.: Effects of micro-wedges formed between parallel surfaces on mixed lubrication—part ii: modeling. Tribol. Lett. 19(2), 83–91 (2005). https://doi.org/10.1007/s11249-005-5083-6

    Article  Google Scholar 

  33. Summers-Smith, D.: Laboratory investigation of the performance of a radial face seal. In: BHRA, (ed.) 1st International Conference on Fluid Sealing, Paper D1. BHRA, Ashford, UK (1961)

    Google Scholar 

  34. Tripp, J.: Surface roughness effects in hydrodynamic lubrication: the flow factor method. J. Lubr. Technol. 105(3), 458–465 (1983)

    Article  Google Scholar 

  35. Vezjak, A., Vizintin, J.: Experimental study on the relationship between lubrication regime and the performance of mechanical seals. Lubr. Eng. 57(1), 17–22 (2001)

    CAS  Google Scholar 

  36. Watson, W., Spedding, T.: The time series modelling of non-gaussian engineering processes. Wear 83, 215–231 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noël Brunetière.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunetière, N., Francisco, A. Lubrication Mechanisms Between Parallel Rough Surfaces. Tribol Lett 67, 116 (2019). https://doi.org/10.1007/s11249-019-1228-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1228-x

Keywords

Navigation