Skip to main content
Log in

Cavitation Erosion Behavior of 316L Stainless Steel

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Cavitation erosion behavior of 316L was investigated mainly in terms of its microstructural and mechanical factors. The cavitation erosion resistance (Re) was defined with the consideration of evolutionary tendency of the erosion rate. Morphology evolution of the eroded surface was observed by scanning electron microscopy. Early microstructure evolution of the etched surface was analyzed by optical microscopy, video microscopy and 3D measuring laser microscopy. The erosion mechanism was discussed as well. The analysis showed that the initial damage initiated from the grain boundary and slip lines inside grains, and that penetration slip lines were found across grains. Evolution of roughness, residual stress, and hardness of the eroded material and the effect of the evolution on Re were discussed. Results indicated that residual stress and roughness were inversely proportional to Re of 316L, hardness tended to be proportional to Re, and the residual stress induced by cavitation impact load influenced the hardness test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhen, L., Han, J., Lu, J., Chen, J.: Cavitation erosion behavior of Hastelloy C-276 nickel-based alloy. J. Alloy Compd. 619, 754–759 (2015)

    Google Scholar 

  2. Cheng, F.T., Kwok, C.T., Man, H.C.: Cavitation erosion resistance of stainless steel laser-clad with WC-reinforced MMC. Mater. Lett. 57, 969–974 (2002)

    CAS  Google Scholar 

  3. Naudé, C.F., Ellis, A.T.: On the mechanism of cavitation damage by non-hemispherical cavities collapsing in contact with a solid boundary. J. Basic Eng. 83, 648–656 (1960)

    Google Scholar 

  4. Dojcinovic, M., Eric, O., Rajnovic, D., Sidjanin, L., Balos, S.: Effect of austempering temperature on cavitation behaviour of unalloyed ADI material. Mater. Charact. 82, 66–72 (2013)

    CAS  Google Scholar 

  5. Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford University Press, New York (1995)

    Google Scholar 

  6. Wang, Y., Stella, J., Darut, G., Poirier, T., Liao, H.L., Planche, M.P.: APS prepared NiCrBSi-YSZ composite coatings for protection against cavitation erosion. J. Alloys Compds. 699, 1095–1103 (2017)

    CAS  Google Scholar 

  7. Emelyanenko, A.M., Shagieva, F.M., Domantovsky, A.G., Boinovich, L.B.: Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion. Appl. Surf. Sci. 332, 513–517 (2015)

    CAS  Google Scholar 

  8. Wang, Y., Liu, J.W., Kang, N., Darut, G., Poirier, T., Stella, J., Liao, H.L., Planche, M.P.: Cavitation erosion of plasma-sprayed CoMoCrSi coatings. Tribol. Int. 102, 429–435 (2016)

    CAS  Google Scholar 

  9. Lin, J.R., Wang, Z.H., Lin, P.H., Cheng, J.B., Zhang, X., Hong, S.: Effects of post annealing on the microstructure, mechanical properties and cavitation erosion behavior of arc-sprayed FeNiCrBSiNbW coatings. Mater. Des. 65, 1035–1040 (2015)

    CAS  Google Scholar 

  10. Kumar, A., Sharma, A., Goel, S.K.: Effect of heat treatment on microstructure, mechanical properties and erosion resistance of cast 23-8-N nitronic steel. Mater. Sci. Eng. A 637, 56–62 (2015)

    CAS  Google Scholar 

  11. Niederhofer, P., Pöhl, F., Geenen, K., Huth, S., Theisen, W.: Influence of crystallographic orientation on cavitation erosion resistance of high interstitial CrMnCN austenitic stainless steels. Tribol. Int. 95, 66–75 (2016)

    CAS  Google Scholar 

  12. Bregliozzi, G., Schino, A.Di, Ahmed, I.U., Kenny, J.M., Haefke, H.: Cavitation wear behaviour of austenitic stainless steels with different grain sizes. Wear 258, 503–510 (2005)

    CAS  Google Scholar 

  13. Bregliozzi, G., Schino, A.Di, Haefke, H., Kenny, J.M.: Cavitation erosion resistance of a high nitrogen austenitic stainless steel as a function of its grain size. J. Mater. Sci. Lett. 22, 981–983 (2003)

    CAS  Google Scholar 

  14. Santos, J.F., Garzón, C.M., Tschiptschin, A.P.: Improvement of the cavitation erosion resistance of an AISI 304L austenitic stainless steel by high temperature gas nitriding. Mater. Sci. Eng. A 382, 378–386 (2004)

    Google Scholar 

  15. Drozdz, D., Wunderlich, R.K., Fecht, H.-J.: Cavitation erosion behaviour of Zr-based bulk metallic glasses. Wear 262, 176–183 (2007)

    CAS  Google Scholar 

  16. Park, M.C., Kim, K.N., Shin, G.S., Yun, J.Y., Shin, M.H., Kim, S.J.: Effects of Ni and Mn on the cavitation erosion resistance of Fe–Cr–C–Ni/Mn austenitic alloys. Tribol. Lett. 52, 477–484 (2013)

    CAS  Google Scholar 

  17. Zhang, L., Zhang, Y.K., Lu, J.Z., Dai, F.Z., Feng, A.X., Luo, K.Y., Zhong, J.S., Wang, Q.W., Luo, M., Qi, H.: Effects of laser shock processing on electrochemical corrosion resistance of ANSI 304 stainless steel weldments after cavitation erosion. Corros. Sci. 66, 5–13 (2013)

    CAS  Google Scholar 

  18. Zhang, Y.K., Lu, J.Z., Ren, X.D., Yao, H.B., Yao, H.X.: Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy. Mater. Des. 30, 1697–1703 (2009)

    CAS  Google Scholar 

  19. Mottyll, S., Skoda, R.: Numerical 3D flow simulation of ultrasonic horns with attached cavitation structures and assessment of flow aggressiveness and cavitation erosion sensitive wall zones. Ultrason. Sonochem. 31, 570–589 (2016)

    CAS  Google Scholar 

  20. Schijve, J.: Fatigue of Structures and Materials. National Defence Industry Press, Beijing (2004). (In Chinese)

    Google Scholar 

  21. Sreedhar, B.K., Albert, S.K., Pandit, A.B.: Cavitation damage: theory and measurements—a review. Wear 372–373, 177–196 (2017)

    Google Scholar 

  22. Pędzich, Z., Jasionowski, R., Ziąbka, M.: Cavitation wear of structural oxide ceramics and selected composite materials. J. Eur. Ceram. Soc. 34, 3351–3356 (2014)

    Google Scholar 

  23. Hattori, S., Mikami, N.: Cavitation erosion resistance of stellite alloy weld overlays. Wear 267, 1954–1960 (2009)

    CAS  Google Scholar 

  24. Hattori, S., Ishikura, R., Zhang, Q.: Construction of database on cavitation erosion and analyses of carbon steel data. Wear 257, 1022–1029 (2004)

    CAS  Google Scholar 

  25. Hattori, S., Ishikura, R.: Revision of cavitation erosion database and analysis of stainless steel data. Wear 268, 109–116 (2010)

    CAS  Google Scholar 

  26. Duraiselvam, M., Galun, R., Wesling, V., Mordike, B.L., Reiter, R., Oligmüller, J.: Cavitation erosion resistance of AISI 420 martensitic stainless steel laser-clad with nickel aluminide intermetallic composites and matrix composites with TiC reinforcement. Surf. Coat. Technol. 201, 1289–1295 (2006)

    CAS  Google Scholar 

  27. Chi, S.K., Park, J.H., Shon, M.Y.: Study on cavitation erosion resistance and surface topologies of various coating materials used in shipbuilding industry. J. Ind. Eng. Chem. 26, 384–389 (2015)

    CAS  Google Scholar 

  28. Mitelea, I., Bordeaşu, I., Pelle, M., Crăciunescu, C.: Ultrasonic cavitation erosion of nodular cast iron with ferrite-pearlite microstructure. Ultrason. Sonochem. 23, 385–390 (2015)

    CAS  Google Scholar 

  29. Ibanez, I., Hodnett, M., Zeqiri, B., Frota, M.N.: Correlating inertial acoustic cavitation emissions with material erosion resistance. Phys. Procedia. 87, 16–23 (2016)

    CAS  Google Scholar 

  30. Nie, B., Zhang, Z., Zhao, Z., Zhong, Q.: Very high cycle fatigue behavior of shot-peened 3Cr13 high strength spring steel. Mater. Des. 50, 503–508 (2013)

    CAS  Google Scholar 

  31. Pohl, M., Stella, J.: Quantitative CLSM roughness study on early cavitation-erosion damage. Wear 252, 501–511 (2002)

    CAS  Google Scholar 

  32. Pineau, A., Benzerga, A.A., Pardoen, T.: Failure of metals I: brittle and ductile fracture. Acta Mater. 107, 424–483 (2016)

    CAS  Google Scholar 

  33. Santa, J.F., Blanco, J.A., Giraldo, J.E.: Cavitation erosion of martensitic and austenitic stainless steel welded coatings. Wear 271, 1445–1453 (2011)

    CAS  Google Scholar 

  34. Xiaojun, Z., Procopiak, L.A.J., Souza, N.C., D’Oliveira, A.S.C.M.: Phase transformation during cavitation erosion of a Co stainless steel. Mater. Sci. Eng. A 358, 199–204 (2003)

    Google Scholar 

  35. Chen, H., Liu, S., Wang, J., Chen, D.: Spherical dendritic particles formed in cavitation erosion. Mater. Lett. 62, 2707–2709 (2008)

    CAS  Google Scholar 

  36. Karrab, S.A.: Investigation of the ring area formed around cavitation erosion pits on the surface of carbon steel. Tribol. Lett. 45, 437–444 (2012)

    Google Scholar 

  37. Grajales, D.H.M., Ospina, C.M.G., Tschiptschin, A.P.: Mesoscale plasticity anisotropy at the earliest stages of cavitation-erosion damage of a high nitrogen austenitic stainless steel. Wear 267, 99–103 (2009)

    CAS  Google Scholar 

  38. Mesa, D.H., Garzón, C.M., Tschiptschin, A.P.: Influence of cold-work on the cavitation erosion resistance and on the damage mechanisms in high-nitrogen austenitic stainless steels. Wear 271, 1372–1377 (2011)

    CAS  Google Scholar 

  39. Karimi, A., Martin, J.L.: Cavitation erosion of materials. Metall. Rev. 31, 1–26 (1986)

    CAS  Google Scholar 

  40. Karimi, A., Franc, J.-P.: Modeling of material response. In: Kim, K.H., Chahine, G., Franc, J.P., Karimi, A. (eds.) Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction, pp. 163–181. Springer, Dordrecht (2014)

    Google Scholar 

  41. Dan, O., Soyama, H.: Cavitation shotless peening for improvement of fatigue strength of carbonized steel. Int. J. Fatigue 25, 1217–1222 (2003)

    Google Scholar 

  42. Thiruvengadam, A., Waring, S.: Mechanical properties of metals and their cavitation damage resistance. Mech. Prop. Met. Cavitation Damage Resist. 10, 47 (1964)

    Google Scholar 

  43. Bulatov, V.V., Vladimirov, Y.: V: on the effect of a general residual stress state on indentation and hardness testing. Acta Mater. 56, 6205–6213 (2008)

    Google Scholar 

Download references

Funding

This study was funded by The National Key Research and Development Program of China (Grant No. 2016YFF0203301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, G., Zhang, Z. Cavitation Erosion Behavior of 316L Stainless Steel. Tribol Lett 67, 112 (2019). https://doi.org/10.1007/s11249-019-1225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1225-0

Keywords

Navigation