Skip to main content
Log in

Effect of Water Incorporation on the Lubrication Characteristics of Synthetic Oils

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Deterioration of the lubricant performance of oils due to water incorporation is a major cause of failure during prolonged operation of mechanical assemblies. However, early indication of lubricant failure is challenging. In this work, a quartz crystal microbalance (QCM) technique was used to sense changes in oil characteristics and degradation upon water incorporation. The results obtained during runs at different temperatures indicate stronger signs of oil degradation with larger amount of water mixed in it. The observations on the lubrication performance of water-containing lubricants were confirmed by evaluating the effect of water incorporation on the tribological performance of steel surfaces immersed in synthetic oil. Macroscale tribological analysis indicated an increase in friction and wear of sliding steel components lubricated with water-containing oil after longer durations of tests. The results of this study provide new insights into how early signs of oil degradation can be sensed using the QCM technique toward minimizing the potential negative impact of such changes on the lubrication characteristics of oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Holmberg, K., Andersson, P., Erdemir, A.: Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012)

    Article  Google Scholar 

  2. Khonsari, M.M., Booser, E.R.: Applied Tribology: Bearing Design and Lubrication. Wiley, New York (2001)

    Google Scholar 

  3. Park, J.Y., Salmeron, M.: Fundamental aspects of energy dissipation in friction. Chem. Rev. 114(1), 677–711 (2013)

    Article  Google Scholar 

  4. Berman, D., Erdemir, A., Sumant, A.V.: Approaches for achieving superlubricity in two-dimensional materials. ACS Nano 12(3), 2122–2137 (2018)

    Article  CAS  Google Scholar 

  5. Olsson, H., Åström, K.J., De Wit, C.C., Gäfvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control 4(3), 176–195 (1998)

    Article  Google Scholar 

  6. Li, X., Teitgen, A.M., Shirani, A., Ling, J., Busta, L., Cahoon, R.E., Zhang, W., Li, Z., Chapman, K.D., Berman, D., Zhang, C., Minto, R.E., Cahoon, E.B.: Discontinuous fatty acid elongation yields hydroxylated seed oil with improved function. Nat. Plants 4(9), 711–720 (2018)

    Article  CAS  Google Scholar 

  7. Chang, Q., Rudenko, P., Miller, D.J., Wen, J., Berman, D., Zhang, Y., Arey, B., Zhu, Z., Erdemir, A.: Operando formation of an ultra-low friction boundary film from synthetic magnesium silicon hydroxide additive. Tribol. Int. 110, 35–40 (2017)

    Article  CAS  Google Scholar 

  8. Bartz, W.J.: Engine Oils and Automotive Lubrication. Routledge, London (2019)

    Book  Google Scholar 

  9. Bartz, W.J.: Lubricants and the environment. Tribol. Int. 31(1), 35–47 (1998)

    Article  CAS  Google Scholar 

  10. Smith, F.: Lubricant behaviour in concentrated contact systems—the castor oil–steel system. Wear 2(4), 250–263 (1959)

    Article  Google Scholar 

  11. Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17(1), 31–42 (2014)

    Article  CAS  Google Scholar 

  12. Erdemir, A.: Solid lubricants and self-lubricating films. In: Bhushan, B. (ed.) Handbook of Modern Tribology, pp. 787–818. CRC Press, Boca Raton (2001)

    Google Scholar 

  13. Hamrock, B.J., Schmid, S.R., Jacobson, B.O.: Fundamentals of Fluid Film Lubrication. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  14. Erdemir, A., Ramirez, G., Eryilmaz, O.L., Narayanan, B., Liao, Y., Kamath, G., Sankaranarayanan, S.K.R.S.: Carbon-based tribofilms from lubricating oils. Nature 536(7614), 67–71 (2016)

    Article  CAS  Google Scholar 

  15. Szeri, A.Z.: Tribology: Friction, Lubrication, and Wear. Hemisphere, Washington (1980)

    Google Scholar 

  16. Kokal, S.L.: Crude oil emulsions: a state-of-the-art review. SPE Prod. Facil. 20(01), 5–13 (2005)

    Article  CAS  Google Scholar 

  17. Adiga, K., Shah, D.: On the vaporization behavior of water-in-oil microemulsions. Combust. Flame 80(3–4), 412–414 (1990)

    Article  CAS  Google Scholar 

  18. Yang, W., An, H., Chou, S., Chua, K., Mohan, B., Sivasankaralingam, V., Raman, V., Maghbouli, A., Li, J.: Impact of emulsion fuel with nano-organic additives on the performance of diesel engine. Appl. Energy 112, 1206–1212 (2013)

    Article  CAS  Google Scholar 

  19. Wilson, W., Sakaguchi, Y., Schmid, S.: A dynamic concentration model for lubrication with oil-in-water emulsions. Wear 161(1–2), 207–212 (1993)

    Article  CAS  Google Scholar 

  20. Kimura, Y., Okada, K.: Lubricating properties of oil-in-water emulsions. Tribol. Trans. 32(4), 524–532 (1989)

    Article  CAS  Google Scholar 

  21. Cantley, R.E.: The effect of water in lubricating oil on bearing fatigue life. ASLE Trans. 20(3), 244–248 (1977)

    Article  CAS  Google Scholar 

  22. Hamaguchi, H., Spikes, H.A., Cameron, A.: Elastohydrodynamic properties of water in oil emulsions. Wear 43(1), 17–24 (1977)

    Article  CAS  Google Scholar 

  23. Cambiella, A., Benito, J.M., Pazos, C., Coca, J., Ratoi, M., Spikes, H.A.: The effect of emulsifier concentration on the lubricating properties of oil-in-water emulsions. Tribol. Lett. 22(1), 53 (2006)

    Article  CAS  Google Scholar 

  24. Lee, J., Berman, D.: Inhibitor or promoter: insights on the corrosion evolution in a graphene protected surface. Carbon 126, 225–231 (2018)

    Article  CAS  Google Scholar 

  25. Lee, J., Atmeh, M., Berman, D.: Effect of trapped water on the frictional behavior of graphene oxide layers sliding in water environment. Carbon 120, 11–16 (2017)

    Article  CAS  Google Scholar 

  26. Berman, D., Krim, J.: Impact of oxygen and argon plasma exposure on the roughness of gold film surfaces. Thin Solid Films 520(19), 6201–6206 (2012)

    Article  CAS  Google Scholar 

  27. She, Y., Lee, J., Lee, B., Diroll, B., Scharf, T., Shevchenko, E.V., Berman, D.: Effect of the micelle opening in self-assembled amphiphilic block co-polymer films on the infiltration of inorganic precursors. Langmuir 35(3), 796–803 (2019)

    Article  CAS  Google Scholar 

  28. She, Y., Lee, J., Diroll, B.T., Scharf, T.W., Shevchenko, E.V., Berman, D.: Accessibility of the pores in highly porous alumina films synthesized via sequential infiltration synthesis. Nanotechnology 29(49), 495703 (2018)

    Article  Google Scholar 

  29. Acharya, B., Sidheswaran, M.A., Yungk, R., Krim, J.: Quartz crystal microbalance apparatus for study of viscous liquids at high temperatures. Rev. Sci. Instrum. 88(2), 025112 (2017)

    Article  Google Scholar 

  30. Rodahl, M., Höök, F., Kasemo, B.: QCM operation in liquids: an explanation of measured variations in frequency and Q factor with liquid conductivity. Anal. Chem. 68(13), 2219–2227 (1996)

    Article  CAS  Google Scholar 

  31. Hsu, S.M., Gates, R.S.: Boundary lubricating films: formation and lubrication mechanism. Tribol. Int. 38(3), 305–312 (2005)

    Article  CAS  Google Scholar 

  32. Fuchs, G., Diamond, H.: Oxidation characteristics of lubricating oils. Ind. Eng. Chem. 34(8), 927–937 (1942)

    Article  Google Scholar 

  33. Lahijani, J., Lockwood, F., Klaus, E.: The influence of metals on sludge formation. ASLE Trans. 25(1), 25–32 (1982)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed in part at the University of North Texas’ Materials Research Facility. Support from the Advanced Materials and Manufacturing Processes Institute (AMMPI) at the University of North Texas is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Berman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacques, K., Joy, T., Shirani, A. et al. Effect of Water Incorporation on the Lubrication Characteristics of Synthetic Oils. Tribol Lett 67, 105 (2019). https://doi.org/10.1007/s11249-019-1217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1217-0

Keywords

Navigation