Skip to main content

Advertisement

Log in

Effect of Retained Austenite on White Etching Crack Behavior of Carburized AISI 8620 Steel Under Boundary Lubrication

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The formation of white etching cracks (WECs) is a dominant failure mode in wind turbine gearbox bearings that can significantly shorten their operating life. Although the phenomenon of WECs has been communicated in the field for more than a decade, the driving mechanisms are still debated, and the impact of proposed mitigation techniques is not quantified. Leading hypotheses to inhibit the formation of WECs center on material solutions, including the use of steel with high levels of retained austenite (RA). The present work aims to explore the impact of RA on the formation of WECs within AISI 8620 steel under boundary lubrication. A three ring-on-roller benchtop test rig was used to replicate WECs in samples with different levels of RA. While varying levels of RA had a minimal effect on time until failure, a significant effect on crack morphology was observed. Additionally, potential underlying mechanisms of White Etching Area formation were elucidated. Under the current test conditions, the microstructural alterations adjacent to the cracks in the lower RA samples were more developed compared to those of the higher RA samples. Additionally, the WEC networks in the high RA samples contained significantly more crack branches than those of the low RA samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kotzalas, M.N., Doll, G.L.: Tribological advancements for reliable wind turbine performance. Philos. Trans. 368(1929), 4829–4850 (2010)

    Article  Google Scholar 

  2. Musial, W., Butterfield, S., McNiff, B.: Improving wind turbine gearbox reliability. In: European Wind Energy Conference, 2007, Milan Italy, pp. 7–10

  3. Greco, A., et al.: Material wear and fatigue in wind turbine systems. Wear 302(1–2), 1583–1591 (2013)

    Article  CAS  Google Scholar 

  4. Singh, H., et al.: Investigation of microstructural alterations in low- and high-speed intermediate-stage wind turbine gearbox bearings. Tribol. Lett. 65(3), 81 (2017)

    Article  Google Scholar 

  5. Kang, J.H., et al.: Solute redistribution in the nanocrystalline structure formed in bearing steels. Scr. Mater. 69(8), 630–633 (2013)

    Article  CAS  Google Scholar 

  6. Smelova, V., et al.: Electron microscopy investigations of microstructural alterations due to classical Rolling Contact Fatigue (RCF) in martensitic AISI 52100 bearing steel. Int. J. Fatigue 98, 142–154 (2017)

    Article  CAS  Google Scholar 

  7. Smelova, V., et al.: Microstructural changes in White Etching Cracks (WECs) and their relationship with those in Dark Etching Region (DER) and White Etching Bands (WEBs) due to Rolling Contact Fatigue (RCF). Int. J. Fatigue 100, 148–158 (2017)

    Article  CAS  Google Scholar 

  8. Su, Y.-S., et al., Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue. Front. Mech. Eng. (2017). https://doi.org/10.1007/s11465-018-0474-1

    Article  Google Scholar 

  9. Su, Y.S., et al.: Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue. Int. J. Fatigue 105, 160–168 (2017)

    Article  CAS  Google Scholar 

  10. Gould, B., Greco, A.: The influence of sliding and contact severity on the generation of white etching cracks. Tribol. Lett. 60(2), 29 (2015)

    Article  Google Scholar 

  11. Grabulov, A., Petrov, R., Zandbergen, H.W.: EBSD investigation of the crack initiation and TEM/FIB analyses of the microstructural changes around the cracks formed under Rolling Contact Fatigue (RCF). Int. J. Fatigue 32(3), 576–583 (2010)

    Article  CAS  Google Scholar 

  12. Grabulov, A., Ziese, U., Zandbergen, H.W.: TEM/SEM investigation of microstructural changes within the white etching area under rolling contact fatigue and 3-D crack reconstruction by focused ion beam. Scr. Mater. 57(7), 635–638 (2007)

    Article  CAS  Google Scholar 

  13. Martin, J.A., Borgese, S.F., Ad, E.: Microstructural alterations of rolling—bearing steel undergoing cyclic stressing. J. Basic Eng. 88(3), 555 (1966)

    Article  Google Scholar 

  14. Obrien, J.L., King, A.H.: Electron microscopy of stress-induced structural alterations near inclusions in bearing steels. J. Basic Eng. 88(3), 568 (1966)

    Article  Google Scholar 

  15. Lund, T.B., Beswick, J., Dean, S.W.: Sub-surface initiated rolling contact fatigue—influence of non-metallic inclusions. J. ASTM Int. 7(5), 102559 (2010)

    Article  Google Scholar 

  16. Scott, D., Loy, B., Mills, G.H.: Paper 10: metallurgical aspects of rolling contact fatigue. In: Proceedings of the Institution of Mechanical Engineers, pp. 94–103. SAGE Journals (1966)

  17. Stadler, K., Lai, J., Vegter, R., A review: the dilemma with premature white etching crack (WEC) bearing failures. In: Bearing Steel Technologies: Advances in Steel Technologies for Rolling Bearings, vol. 10, pp. 487–508. ASTM International, West Conshohocken (2015)

    Google Scholar 

  18. Evans, M.H.: An updated review: white etching cracks (WECs) and axial cracks in wind turbine gearbox bearings. Mater. Sci. Technol. 32(11), 1133–1169 (2016)

    Article  CAS  Google Scholar 

  19. Luyckx, J.: Hammering wear impact fatigue hypothesis WEC/irWEA failure mode on roller bearings. In: NREL Wind Tribology Seminar (2011)

  20. Hyde, S.: White etch areas: metallurgical characterization and atomistic modeling (2014)

  21. Solano-Alvarez, W., Bhadeshia, H.K.D.H.: White-etching matter in bearing steel. Part II: distinguishing cause and effect in bearing steel failure. Metall. Mater. Trans. A 45a(11), 4916–4931 (2014)

    Article  Google Scholar 

  22. Bhadeshia, H.K.D.H.: Steels for bearings. Prog. Mater. Sci. 57(2), 268–435 (2012)

    Article  CAS  Google Scholar 

  23. Evans, M.H., et al.: Serial sectioning investigation of butterfly and white etching crack (WEC) formation in wind turbine gearbox bearings. Wear 302(1–2), 1573–1582 (2013)

    Article  CAS  Google Scholar 

  24. Bruce, T., et al.: Characterisation of white etching crack damage in wind turbine gearbox bearings. Wear 338, 164–177 (2015)

    Article  Google Scholar 

  25. Gould, B., Greco, A.: Investigating the process of white etching crack initiation in bearing steel. Tribol. Lett. 62(2), 26 (2016)

    Article  Google Scholar 

  26. Errichello, R., et al.: Wind Turbine Tribology Seminar: A Recap (2011)

  27. Gegner, J.: Tribological Aspects of Rolling Bearing Failures. INTECH Open Access Publisher, London (2011)

    Book  Google Scholar 

  28. Loos, J., Bergmann, I., Goss, M.: Influence of currents from electrostatic charges on WEC formation in rolling bearings. Tribol. Trans. 59(5), 865–875 (2016)

    Article  CAS  Google Scholar 

  29. Gould, B.J., Burris, D.L.: Effects of wind shear on wind turbine rotor loads and planetary bearing reliability. Wind Energy 19, 1011–1021 (2015)

    Article  Google Scholar 

  30. Garabedian, N., et al.: The cause of premature wind turbine bearing failures: overloading or underloading? Tribol. Trans. 61(5), 850–860 (2018)

    Article  CAS  Google Scholar 

  31. Kang, Y.S., Evans, R.D., Doll, G.L.: Roller-raceway slip simulations of wind turbine gearbox bearings using dynamic bearing model. In: Proceedings of the STLE/ASME International Joint Tribology Conference, 2010, pp. 407–409 (2011)

  32. Holweger, W.: Progresses in Solving White Etching Crack Phenomena. NREL: Gearbox Reliability Collaborative, Golden (2014)

    Google Scholar 

  33. Strandell, I., Fajers, C., Lund, T.: Corrosion—one root cause for premature failures. In: 37th Leeds–Lyon Symposium on Tribology (2010)

  34. Iso, K., Yokouchi, A., Takemura, H.: Research Work for Clarifying the Mechanism of White Structure Flaking and Extending the Life of Bearings. SAE Technical Paper, 2005(SP-1967), pp. 39–48

  35. Vegter, R.H., Slycke, J.T.: The role of hydrogen on rolling contact fatigue response of rolling element bearings. J. ASTM Int. 7(2), 1–12 (2010)

    Article  Google Scholar 

  36. Uyama, H., et al.: The effects of hydrogen on microstructural change and surface originated flaking in rolling contact fatigue. Tribol. Online 6, 123–132 (2011)

    Article  Google Scholar 

  37. Hiraoka, K., et al.: Generation process observation of micro-structural change in rolling contact fatigue by hydrogen-charged specimens. J. Jpn. Soc. Tribol. 52(12), 888–895 (2007)

    CAS  Google Scholar 

  38. Kino, N., Otani, K.: The influence of hydrogen on rolling contact fatigue life and its improvement. JSAE Rev. 24(3), 289–294 (2003)

    Article  CAS  Google Scholar 

  39. Tamada, K., Tanaka, H.: Occurrence of brittle flaking on bearings used for automotive electrical instruments and auxiliary devices. Wear 199(2), 245–252 (1996)

    Article  CAS  Google Scholar 

  40. Ciruna, J.A., Szieleit, H.J.: The effect of hydrogen on the rolling contact fatigue life of AISI 52100 and 440C steel balls. Wear 24, 107–118 (1973)

    Article  CAS  Google Scholar 

  41. Grunberg, L.: The formation of hydrogen peroxide on fresh metal surfaces. Proc. Phys. Soc. Lond. B 66(399), 153–161 (1953)

    Article  Google Scholar 

  42. Imran, T., Jacobson, B., Shariff, A.: Quantifying diffused hydrogen in AISI-52100 bearing steel and in silver steel under tribo-mechanical action: pure rotating bending, sliding–rotating bending, rolling–rotating bending and uni-axial tensile loading. Wear 261(1), 86–95 (2006)

    Article  CAS  Google Scholar 

  43. Ray, D., et al.: Hydrogen embrittlement of a stainless ball-bearing steel. Wear 65(1), 103–111 (1980)

    Article  CAS  Google Scholar 

  44. Matsubara, Y., Hamada, H.: A novel method to evaluate the influence of hydrogen on fatigue properties of high strength steels. J. ASTM Int. 3, 1–14 (2006)

    Article  Google Scholar 

  45. Lu, H., et al.: Hydrogen-enhanced dislocation emission, motion and nucleation of hydrogen-induced cracking for steel. Sci. China E 40(5), 530–538 (1997)

    Article  CAS  Google Scholar 

  46. Fujita, S., et al.: Effect of hydrogen on Mode II fatigue crack behavior of tempered bearing steel and microstructural changes. Int. J. Fatigue 32(6), 943–951 (2010)

    Article  CAS  Google Scholar 

  47. Evans, M.H., et al.: Effect of hydrogen on butterfly and white etching crack (WEC) formation under rolling contact fatigue (RCF). Wear 306(1–2), 226–241 (2013)

    Article  CAS  Google Scholar 

  48. Ruellan, A., et al.: Understanding white etching cracks in rolling element bearings: the effect of hydrogen charging on the formation mechanisms. Proc. Inst. Mech. Eng. J 228, 1252–1265 (2014)

    Article  CAS  Google Scholar 

  49. Evans, M.H., et al.: White etching crack (WEC) investigation by serial sectioning, focused ion beam and 3-D crack modelling. Tribol. Int. 65, 146–160 (2013)

    Article  CAS  Google Scholar 

  50. Guzman, F.G., et al.: Reproduction of white etching cracks under rolling contact loading on thrust bearing and two-disc test rigs. Wear 390–391, 23–32 (2017)

    Article  Google Scholar 

  51. Danielsen, H.K., et al.: Multiscale characterization of White Etching Cracks (WEC) in a 100Cr6 bearing from a thrust bearing test rig. Wear 370, 73–82 (2017)

    Article  Google Scholar 

  52. Richardson, A.D., et al.: The evolution of white etching cracks (WECs) in rolling contact fatigue-tested 100Cr6 steel. Tribol. Lett. 66(1), 6 (2018)

    Article  Google Scholar 

  53. Richardson, A.D., et al.: Thermal desorption analysis of hydrogen in non-hydrogen-charged rolling contact fatigue-tested 100Cr6 steel. Tribol. Lett. 66(1), 4 (2018)

    Article  Google Scholar 

  54. Scepanskis, M., Gould, B., Greco, A.: Empirical investigation of electricity self-generation in a lubricated sliding–rolling contact. Tribol. Lett. 65, 109–119 (2017)

    Article  Google Scholar 

  55. Evans, M.H., et al.: Confirming subsurface initiation at non-metallic inclusions as one mechanism for white etching crack (WEC) formation. Tribol. Int. 75, 87–97 (2014)

    Article  Google Scholar 

  56. Franke, J., et al.: White etching cracking—simulation in bearing rig and bench tests. Tribol. Trans. 61(3), 403–413 (2018)

    Article  CAS  Google Scholar 

  57. Gould, B., et al.: The effect of lubricant composition on white etching crack failures. Tribol. Lett. 67(7), 7 (2019)

    Article  Google Scholar 

  58. Paladugu, M., Hyde, R.S.: White etching matter promoted by intergranular embrittlement. Scr. Mater. 130, 219–222 (2017)

    Article  CAS  Google Scholar 

  59. Paladugu, M., Hyde, R.S.: Microstructure deformation and white etching matter formation along cracks. Wear 390–391, 367–375 (2017)

    Article  Google Scholar 

  60. Li, S.X., et al.: Microstructural evolution in bearing steel under rolling contact fatigue. Wear 380–381, 146–153 (2017)

    Article  Google Scholar 

  61. Bruce, T., et al.: Formation of white etching cracks at manganese sulfide (MnS) inclusions in bearing steel due to hammering impact loading. Wind Energy 19(10), 1903–1915 (2016)

    Article  Google Scholar 

  62. Gould, B., et al.: An analysis of premature cracking associated with microstructural alterations in an AISI 52100 failed wind turbine bearing using X-ray tomography. Mater. Des. 117, 417–429 (2017)

    Article  CAS  Google Scholar 

  63. Gould, B., et al.: Using advanced tomography techniques to investigate the development of White Etching Cracks in a prematurely failed field bearing. Tribol. Int. 116, 362–370 (2017)

    Article  CAS  Google Scholar 

  64. Errichello, R., Budny, R., Eckert, R.: Investigations of bearing failures associated with white etching areas (WEAs) in wind turbine gearboxes. Tribol. Trans. 56(6), 1069–1076 (2013)

    Article  CAS  Google Scholar 

  65. Paladugu, M., Hyde, R.S.: Influence of microstructure on retained austenite and residual stress changes under rolling contact fatigue in mixed lubrication conditions. Wear 406–407, 84–91 (2018)

    Article  Google Scholar 

  66. Ooi, G.T.C., Roy, S., Sundararajan, S.: Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches. Mater. Sci. Eng. A 732, 311–319 (2018)

    Article  CAS  Google Scholar 

  67. Roy, S., Ooi, G.T.C., Sundararajan, S.: Effect of retained austenite on micropitting behavior of carburized AISI 8620 steel under boundary lubrication. Materialia 3, 192–201 (2018)

    Article  Google Scholar 

  68. Roy, S., Sundararajan, S.: Effect of retained austenite on spalling behavior of carburized AISI 8620 steel under boundary lubrication. Int. J. Fatigue 119, 238–246 (2019)

    Article  CAS  Google Scholar 

  69. Roy, S., Sundararajan, S.: The effect of heat treatment routes on the retained austenite and tribomechanical properties of carburized AISI 8620 steel. Surf. Coat. Technol. 308, 236–243 (2016)

    Article  CAS  Google Scholar 

  70. Roy, S., White, D., Sundararajan, S.: Correlation between evolution of surface roughness parameters and micropitting of carburized steel under boundary lubrication condition. Surf. Coat. Technol. 350, 445–452 (2018)

    Article  CAS  Google Scholar 

  71. Singh, H., et al.: Fatigue resistant carbon coatings for rolling/sliding contacts. Tribol. Int. 98, 172–178 (2016)

    Article  CAS  Google Scholar 

  72. Chung, Y.-W.: Introduction to Materials Science and Engineering. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  73. Zeng, D., et al.: Influence of laser dispersed treatment on rolling contact wear and fatigue behavior of railway wheel steel. Mater. Des. 54, 137–143 (2014)

    Article  CAS  Google Scholar 

  74. Dommarco, R.C., et al.: Residual stresses and retained austenite evolution in SAE 52100 steel under non-ideal rolling contact loading. Wear 257(11), 1081–1088 (2004)

    Article  CAS  Google Scholar 

  75. Evans, M.H.: White structure flaking (WSF) in wind turbine gearbox bearings: effects of ‘butterflies’ and white etching cracks (WECs). Mater. Sci. Technol. 28(1), 3–22 (2012)

    Article  CAS  Google Scholar 

  76. Osterlund, R., et al.: Butterflies in fatigued all bearings—formation mechanism and structure. Scand. J. Metall. 11, 23–32 (1982)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Maria De La Cinta Lorenzo Martin for her assistance with electron microscopy and Dr. Oyelayo Ajayi for his helpful discussion on metallurgy. Present study is a part of Project funded by John Deere Product Engineering Center in Waterloo, Iowa and Iowa State University. This work was also supported by the US Department of Energy Office of Energy Efficiency and Renewable Energy, Wind Energy Technology Office under Contract No. DE-AC02-06CH11357. The authors are grateful to DOE Project Managers Mr. Michael Derby and Mr. Brad Ring for their support and encouragement. Use of the Center for Nanoscale Materials an Office of Science User Facility was supported by the US Department of Energy Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Sundararajan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Gould, B., Zhou, Y. et al. Effect of Retained Austenite on White Etching Crack Behavior of Carburized AISI 8620 Steel Under Boundary Lubrication. Tribol Lett 67, 40 (2019). https://doi.org/10.1007/s11249-019-1153-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1153-z

Keywords

Navigation