Skip to main content
Log in

RETRACTED ARTICLE: Effects of Copper Nanoparticles Located in Different Regions of Polytetrafluoroethylene/Polyimide Blends on the Morphology, Mechanical and Tribological Properties of PTFE Composites

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

This article was retracted on 30 July 2021

A Commentary to this article was published on 03 March 2021

This article has been updated

Abstract

The effects of copper nanoparticles (Cu) located in different regions of polytetrafluoroethylene/polyimide (PTFE/PI) blends on the morphology, thermal, mechanical, and tribological properties of PTFE composites were studied. Region one is PI phases (the corresponding composites is denoted as PPC), region two is PTFE phases and the interface between PTFE and PI (the corresponding composites is denoted as PPC-m). Results indicate that the incorporation of Cu nanoparticles into PI phases improves the dispersibility and homogeneity of PI phases. As a consequence, the crystallinity of PTFE composites is reduced, but compressive strength and modulus of PTFE composites are enhanced by 50.3% and 14.4% respectively. In addition, self-lubricity and wear resistance of PTFE composites are improved by 10.4% and 50.5%. Scanning electron microscopy (SEM) demonstrates that PI phases with Cu nanoparticles hinder the direct contact between PTFE matrix and counterparts. However, Cu nanoparticles located in PTFE matrix and the interface between PTFE and PI deteriorates the dispersibility and homogeneity of PI phases, which lead to the poor mechanical and tribological performance of PTFE composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

References

  1. Zhang, G., Schlarb, A.K., Tria, S.: Tensile and tribological behaviors of PEEK/nano-SiO2 composites compounded using a ball milling technique. Compos. Sci. Technol. 68, 3073–3080 (2008)

    Article  CAS  Google Scholar 

  2. Min, C., Nie, P., Song, H.J.: Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition. Tribol. Int. 80, 131–140 (2014)

    Article  CAS  Google Scholar 

  3. Yin, X., Wu, J., Li, C., Lu, X.H.: Right way of using graphene oxide additives for water-lubricated PEEK: adding in polymer or water. Tribol. Lett. 66, 103 (2018)

    Article  CAS  Google Scholar 

  4. Unal, H., Mimaroglu, A., Kadıoglu, U.: Sliding friction and wear behaviour of polytetrafluoroethylene and its composites under dry conditions. Mater. Design. 25, 239–245 (2004)

    Article  CAS  Google Scholar 

  5. Sawyer, W.G., Freudenberg, K.D., Bhimaraj, P.: A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254, 573–580 (2003)

    Article  CAS  Google Scholar 

  6. Blanchet, T.A., Kennedy, F.E.: Sliding wear mechanism of polytetraflu- oroethylene (PTFE) and PTFE composites. Wear 153, 229–243 (1992)

    Article  CAS  Google Scholar 

  7. Bahadur, S., Tabor, D.: The wear of filled polytetrafluoroethylene. Wear 98, 1–13 (1984)

    Article  CAS  Google Scholar 

  8. Pooley, T.: Friction-relation of sliding properties of PTFE and PE to molecular orientation. Nature 237, (1972)

  9. Tanaka, K., Uchiyama, Y., Toyooka, S.: The mechanism of wear of polytetrafluoroethylene. Wear 23, 153–172 (1976)

    Article  Google Scholar 

  10. Steijn, R.P.: The sliding surface of polytetrafluoroethylene: an investigation with the electron microscope. Wear 12, 193–212 (1968)

    Article  Google Scholar 

  11. Burris, D.L., Sawyer, W.G.: A low friction and ultra low wear rate PEEK/PTFE composite. Wear 261, 410–418 (2006)

    Article  CAS  Google Scholar 

  12. Zhang, G.L., Ke, Y.C., He, J.: Effects of organo - modified montmorillonite on the tribology performance of bismaleimide-based nanocomposites. Mater. Des. 86, 138–145 (2015)

    Article  CAS  Google Scholar 

  13. Lv, Y., Wang, W., Xie, G.: Self-lubricating PTFE-based composites with black phosphorus nanosheets. Tribol. Lett. 66, 61 (2018)

    Article  CAS  Google Scholar 

  14. Lai, S.Q., Li, T.S., Wang, F.D.: The effect of silica size on the friction and wear behaviors of polyimide/silica hybrids by sol-gel processing. Wear 262, 1048–1055 (2007)

    Article  CAS  Google Scholar 

  15. Jones, M.R., Mcghee, E.O., Marshall, S.L.: The role of microstructure in ultralow wear fluoropolymer composites. Tribol. T. https://doi.org/10.1080/10402004.2018.1502855

  16. Wang, S., Li, Q., Zhang, S.: Tribological behavior of poly (phenyl p-hydroxybenzoate) /polytetrafluoroethylene composites filled with hexagonal boron nitride under dry sliding condition. Mater. Des. 43, 507–512 (2013)

    Article  CAS  Google Scholar 

  17. Hong, M.H., Su-II, P.: Effect of fluorinated ethylene propylene copolymer on the wear behaviour of polytetrafluoroethylene. Wear 143, 87–97 (1991)

    Article  CAS  Google Scholar 

  18. Chen, B., Wang, J., Yan, F.: Microstructure of PTFE-based polymer blends and their tribological behaviors under aqueous environment. Tribol. Lett. 45, 387–395 (2011)

    Article  CAS  Google Scholar 

  19. Jia, Z., Hao, C., Yan, Y.: Effects of nanoscale expanded graphite on the wear and frictional behaviors of polyimide-based composites. Wear 338, 282–287 (2015)

    Article  CAS  Google Scholar 

  20. Wang, Q.H., Zhang, X., Pei, X.: Study on the synergistic effect of carbon fiber and graphite and nanoparticle on the friction and wear behavior of polyimide composites. Mater. Design. 31, 3761–3768 (2010)

    Article  CAS  Google Scholar 

  21. Jiang, Z., Gyurova, L.A., Schlarb, A.K.: Study on friction and wear behavior of polyphenylene sulfide composites reinforced by short carbon fibers and sub-micro TiO2 particles. Compos. Sci. Technol. 68, 734–742 (2008)

    Article  CAS  Google Scholar 

  22. Bijwe, J., Kumar, M.: Optimization of steel wool contents in non-asbestos organic (nao) friction composites for best combination of thermal conductivity and tribo-performance. Wear 263, 1243–1248 (2007)

    Article  CAS  Google Scholar 

  23. Bijwe, J., Kumar, M., Gurunath, P.V.: Optimization of brass contents for best combination of tribo-performance and thermal conductivity of non-asbestos organic (NAO) friction composites. Wear 265, 699–712 (2008)

    Article  CAS  Google Scholar 

  24. Díez-Pascual, A.M., Díez-Vicente, A.L.: Nano-TiO2 reinforced PEEK/PEI blends as biomaterials for load-bearing implant applications, Acs Appl. Mater. Inter. 7, (2015)

  25. Chen, B., Wang, J., Yan, F.: Synergism of carbon fiber and polyimide in polytetrafluoroethylene-based composites: Friction and wear behavior under sea water lubrication. Mater. Design. 36, 366–371 (2012)

    Article  CAS  Google Scholar 

  26. Shi, Y., Mu, L., Feng, X.: The tribological behavior of nanometer and micrometer TiO2 particle filled polytetrafluoroethylene/polyimide. Mater. Design. 32, 964–970 (2011)

    Article  CAS  Google Scholar 

  27. Aghjeh, M.R., Asadi, V.: Mehdijabbar, P.: Application of linear rheology in determination of nanoclay localization in PLA/EVA/Clay nanocomposites: Correlation with microstructure and thermal properties. Compos. Part B. 86, 273–284 (2016)

    Article  CAS  Google Scholar 

  28. Moud, A.A., Javadi, A.: Effect of dispersion and selective localization of carbon nanotubes on rheology and electrical conductivity of polyamide 6 (PA6), Polypropylene (PP), and PA6/PP nanocomposites. J. Polym. Sci. Pol. Phys. 53, 703–717 (2014)

    Google Scholar 

  29. Fu, Q., Bai, H.W., Xiu, H.: Selective localization of titanium dioxide nanoparticles at the interface and its effect on the impact toughness of poly(L-lactide)/poly(ether)urethane blends. Express Polym. Lett. 7, 261–271 (2013)

    Article  CAS  Google Scholar 

  30. Filippone, G., Dintcheva, N.T.: Mantia FPL. Selective localization of organoclay and effects on the morphology and mechanical properties of LDPE/PA11 blends with distributed and co-continuous morphology. J. Polym. Sci. Pol. Phys. 48, 600–609 (2010)

    Article  CAS  Google Scholar 

  31. Zhao, Y.L., Qi, X.W., Dong, Y.: Mechanical, thermal and tribological properties of polyimide/nano-SiO2, composites synthesized using an in-situ polymerization. Tribol. Int. 103, 599–608 (2016)

    Article  CAS  Google Scholar 

  32. Wang, Q.H., Zheng, F., Wang, T.M.: Tribological properties of polymers PI, PTFE and PEEK at cryogenic temperature in vacuum. Cryogenics 75, 19–25 (2016)

    Article  CAS  Google Scholar 

  33. Díezpascual, A.M., Díezvicente, A.L.: Development of nanocomposites reinforced with carboxylatedpoly(ether ether ketone) grafted to zinc oxide with superior antibacterial properties. Acs Appl. Mater. Interfaces 6, 3729–3741 (2014)

    Article  CAS  Google Scholar 

  34. Omidvar, H., Stremsdoerfer, G., Meas, Y.J.: Formation of composite Cu–graphite and Cu-PTFE coatings and their tribological characterization. Mater. Sci. 43, 1716–1722 (2008)

    Article  CAS  Google Scholar 

  35. Yuan, Y., Yu, D., Yin, Y.: Effect of sintering temperature on the crystallization behavior and properties of silica filled PTFE composites. J. Mater. Sci. Mater. El. 27, 13288–13293 (2016)

    Article  CAS  Google Scholar 

  36. Xu, T., Jia, Z., Luo, Y.: Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites. Appl. Surf Sci. 328, 306–313 (2015)

    Article  CAS  Google Scholar 

  37. Lua, A.C., Shen, Y.: Preparation and characterization of polyimide–silica composite membranes and their derived carbon–silica composite membranes for gas separation. Chem. Eng. J. 220, 441–451 (2013)

    Article  CAS  Google Scholar 

  38. Zhang, B., Wu, Y.H., Lu, Y.H., Wang, T.H., Jian, X.G., Qiu, J.S.: Preparation and characterization of carbon and carbon/zeolite membranes from ODPA/ODA type polyetherimide. J. Membrane. Sci. 474, 114–121 (2015)

    Article  CAS  Google Scholar 

  39. And, T.S., Ando, S.: Synthesis, Characterization, and optical properties of metal-containing fluorinated polyimide films. Chem. Mater. 10, 3368–3378 (1998)

    Article  Google Scholar 

  40. Boggess, R.K., Taylor, L.T.: Characterization of cobal-modified polyimides. J. Polym. Sci. Part A 25, 685–702 (2010)

    Article  Google Scholar 

  41. Luyt, A.S., Molefi, J.A., Krump, H.: Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites. Polym. Degrad. Stabil. 91, 1629–1636 (2006)

    Article  CAS  Google Scholar 

  42. Filippone, G., Dintcheva, N.T., Mantia, F.P.L.: Using organoclay to promote morphology refinement and co-continuity in high-density polyethylene/polyamide 6 blends-Effect of filler content and polymer matrix composition. Polymer 51, 3956–3965 (2010)

    Article  CAS  Google Scholar 

  43. And, L.T.V., Giannelis, E.P.: Compatibilizing poly(vinylidene fluoride)/nylon-6 blends with nanoclay. Macromolecules 40, 8271–8276 (2007)

    Article  CAS  Google Scholar 

  44. Shakouri, A., Ahmari, H., Hojjat, M.: Effect of TiO2 nanoparticle on rheological behavior of poly(vinyl alcohol) solution. J. Vinyl. Addit. Techn. 23, 1–7 (2017)

    Article  CAS  Google Scholar 

  45. Mallick, S., Khatua, B.B.: Morphology and properties of nylon6 and high density polyethylene blends in absence and presence of nanoclay. J. Appl. Polym. Sci. 121, 359–368 (2011)

    Article  CAS  Google Scholar 

  46. Tong, W., Huang, Y., Liu, C.: The morphology of immiscible PDMS/PIB blends filled with silica nanoparticles under shear flow. Colloid. Polym. Sci. 288, 753–760 (2010)

    Article  CAS  Google Scholar 

  47. Min, Z.R., Ming, Q.Z., Yong, X.Z.: Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer 42, 167–183 (2001)

    Article  Google Scholar 

  48. Huang, T., Xin, Y., Li, T.: Modified graphene/polyimide nanocomposites: reinforcing and tribological effects. Acs Appl. Mater. Inter. 5, 4878–4891 (2013)

    Article  CAS  Google Scholar 

  49. Davis, C.R., Zimmerman, J.A.: Thermal stability studies of a polyimide - polytetrafluoroethylene blend and its components. J. Appl. Polym. Sci. 54, 153–162 (1994)

    Article  CAS  Google Scholar 

  50. Naffakh, M., Díezpascual, A.M., Marco, C.J.: Novel melt-processable poly(ether ether ketone)(PEEK)/inorganic fullerene-like WS(2) nanoparticles for critical applications. Phys. Chem. B 114, 11444–11453 (2010)

    Article  CAS  Google Scholar 

  51. Kim, J.Y., Han, S.I., Hong, S.: Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites. Polymer 49, 3335–3345 (2008)

    Article  CAS  Google Scholar 

  52. Burris, D.L., Boesl, B., Bourne, G.R.: Polymeric nanocomposites for tribological applications. Macromol. Mater. Eng. 292, 387–402 (2010)

    Article  CAS  Google Scholar 

  53. Quazi, R.T., Bhattacharya, S.N., Kosior, E.J.: The effect of dispersed paint particles on the mechanical properties of rubber toughened polypropylene composites. Mater. Sci. 34, 607–614 (1999)

    Article  CAS  Google Scholar 

  54. Kizilkaya, C., Karataş, S., Apohan, N.: Synthesis and characterization of novel polyimide/SiO2 nanocomposite materials containing phenylphosphine oxide via sol-gel technique. J. Appl. Polym. Sci. 115, 3256–3264 (2010)

    Article  CAS  Google Scholar 

  55. Rusu, M., Sofian, N., Rusu, D.: Mechanical and thermal properties of zinc powder filled high density polyethylene composites. Polym. Test. 20, 409–417 (2001)

    Article  CAS  Google Scholar 

  56. Zhang, Z.Z., Su, F.H., Wang, K.: Study on the friction and wear properties of carbon fabric composites reinforced with micro- and nano-particles. Mat. Sci. Eng. A-Struct. 404, 251–258 (2005)

    Article  CAS  Google Scholar 

  57. Larsen, T., Andersen, T.L., Thorning, B.: Changes in the tribological behavior of an epoxy resin by incorporating CuO nanoparticles and PTFE microparticles. Wear 265, 203–213 (2008)

    Article  CAS  Google Scholar 

  58. Lai, S.Q., Yue, L., Li, T.S.: The friction and wear properties of polytetrafluoroethylene filled with ultrafine diamond. Wear 260, 462–468 (2006)

    Article  CAS  Google Scholar 

  59. Chizhik, S.A., Goldade, A.V., Korotkevich, S.V.: Friction of smooth surfaces with ultrafine particles in the clearance. Wear 238, 25–33 (2000)

    Article  CAS  Google Scholar 

  60. Bahadur, S.: The development of transfer layers and their role in polymer tribology. Wear 245, 92–99 (2000)

    Article  CAS  Google Scholar 

  61. Li, F., Hu, K.A., Li, J.L.: The friction and wear characteristics of nanometer ZnO filled Polytetrafluoroethylene. Wear 249, 877–882 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowen Qi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Qi, X., Zhang, W. et al. RETRACTED ARTICLE: Effects of Copper Nanoparticles Located in Different Regions of Polytetrafluoroethylene/Polyimide Blends on the Morphology, Mechanical and Tribological Properties of PTFE Composites. Tribol Lett 67, 18 (2019). https://doi.org/10.1007/s11249-018-1128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1128-5

Keywords

Navigation