Skip to main content
Log in

Lubricity of High Water Content Aqueous Gels

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Aqueous gels such as biopolymer gels, mucus, and high water content hydrogels are often qualitatively described as lubricious. In hydrogels, mesh size, ξ, has been found to be a controlling parameter in friction coefficient. In the tribology of aqueous gels, we suggest that the Weissenberg number (Wi) is a useful parameter to define different regimes, and following the original formulations in rheology, Wi is given by the polymer relaxation time (ηξ3/kBT) multiplied by the shear rate due to fluid shear through a single mesh (V/ξ): Wi = ηVξ2/kBT. At sliding speeds below a Weissenberg number of approximately 0.1, Wi < 0.1, the friction coefficient is velocity-independent and scales with mesh size to the − 1 power, µ ∝ ξ−1. De Gennes’ scaling concepts for elastic modulus, E, give a dependence on polymer mesh size to the − 3 power, E ∝ ξ−3, and following Hertzian contact analysis, the contact area is found to depend on the mesh size squared, A ∝ ξ2. Combining these concepts, the shear stress, τ, and therefore the lubricity of aqueous gels, is predicted to be highly dependent on the mesh size, τ ∝ ξ−3. Studies aimed at elucidating the fundamental mechanism of lubricity in biopolymer gels, mucus, and hydrogels have wrestled with comparisons across mesh size, which can be extremely difficult to accurately quantify. Using scaling concepts relating polymer mesh size to water content reveals that shear stress decreases rapidly with increasing water content, and plots of shear stress as a function of swollen water content are suggested as a useful method to compare aqueous gels of unknown mesh size. As a lower bound, these data are compared against estimates of fluid shear stress for free and bound water flowing through a mesh size estimated by the water content of the gels. The results indicate that the strong dependence on lubricity is likely due to a synergistic combination of a low viscosity solvent (water) coupled to a system that has a decreasing friction coefficient, modulus, and the resulting contact pressure with increasing water content. Although the permeability, K, of aqueous gels increases dramatically with water content (and mesh size), K ≅ ξ2/η, the stronger decrease of the elastic modulus and subsequent decrease in contact pressure due to an increase in the contact length, predicts that the draining time under contact, t, actually increases strongly with increasing water content and mesh size, t ∝ ξ2. Consistent with the finding of extremely high water content aqueous gels on the surfaces of biological tissues, these high water content gels are predicted to be optimal for lubrication as they are both highly lubricious and robust at resisting draining and sustaining hydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Following Milner’s predictions [62], the hydrodynamic penetration depth due to a simple shear flow in a region alongside a semi-dilute polymer network (e.g., hydrogel) would be essentially the mesh size, ξ.

References

  1. Spencer, N.D. (ed.): Aqueous Lubrication. World Scientific (2014)

  2. Seror, J., Zhu, L., Goldberg, R., Day, A.J., Klein, J.: Supramolecular synergy in the boundary lubrication of synovial joints. Nat. Commun. 6, 6497 (2015). https://doi.org/10.1038/ncomms7497

    Article  Google Scholar 

  3. Iuster, N., Tairy, O., Driver, M.J., Armes, S.P., Klein, J.: Cross-linking highly lubricious phosphocholinated polymer brushes: effect on surface interactions and frictional behavior. Macromolecules. 50, 7361–7371 (2017). https://doi.org/10.1021/acs.macromol.7b01423

    Article  Google Scholar 

  4. Dunn, A.C., Sawyer, W.G., Angelini, T.E.: Gemini interfaces in aqueous lubrication with hydrogels. Tribol. Lett. 54, 59–66 (2014). https://doi.org/10.1007/s11249-014-0308-1

    Article  Google Scholar 

  5. Dunn, A.C., Urueña, J.M., Huo, Y., Perry, S.S., Angelini, T.E., Sawyer, W.G.: Lubricity of surface hydrogel layers. Tribol. Lett. 49, 371–378 (2013). https://doi.org/10.1007/s11249-012-0076-8

    Article  Google Scholar 

  6. Perry, S.S., Yan, X., Limpoco, F.T., Lee, S., Müller, M., Spencer, N.D.: Tribological properties of poly(l-lysine)-graft-poly(ethylene glycol) films: influence of polymer architecture and adsorbed conformation. ACS Appl. Mater. Interfaces. 1, 1224–1230 (2009). https://doi.org/10.1021/am900101m

    Article  Google Scholar 

  7. Pitenis, A.A., Manuel Urueña, J., Cooper, A.C., Angelini, T.E., Sawyer, W.G.: Superlubricity in Gemini hydrogels. J. Tribol. 138, 042103 (2016). https://doi.org/10.1115/1.4032890

    Article  Google Scholar 

  8. Li, A., Benetti, E.M., Tranchida, D., Clasohm, J.N., Schönherr, H., Spencer, N.D.: Surface-grafted, covalently cross-linked hydrogel brushes with tunable interfacial and bulk properties. Macromolecules. 44, 5344–5351 (2011). https://doi.org/10.1021/ma2006443

    Article  Google Scholar 

  9. Gong, J.P., Kurokawa, T., Narita, T., Kagata, G., Osada, Y., Nishimura, G., Kinjo, M.: Synthesis of hydrogels with extremely low surface friction. J. Am. Chem. Soc. 123, 5582–5583 (2001). https://doi.org/10.1021/ja003794q

    Article  Google Scholar 

  10. Pitenis, A.A., Manuel Urueña, J., Nixon, R.M., Bhattacharjee, T., Krick, B.A., Dunn, A.C., Angelini, T.E., Sawyer, W.G.: Lubricity from entangled polymer networks on hydrogels. J. Tribol. 138, 042102 (2016). https://doi.org/10.1115/1.4032889

    Article  Google Scholar 

  11. Rudy, A., Kuliasha, C., Uruena, J., Rex, J., Schulze, K.D., Stewart, D., Angelini, T., Sawyer, W.G., Perry, S.S.: Lubricous hydrogel surface coatings on polydimethylsiloxane (PDMS). Tribol. Lett. 65, 3 (2017). https://doi.org/10.1007/s11249-016-0783-7

    Article  Google Scholar 

  12. Klein, J., Kumacheva, E., Mahalu, D., Perahia, D., Fetters, L.J.: Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature. 370, 634–636 (1994). https://doi.org/10.1038/370634a0

    Article  Google Scholar 

  13. Shoaib, T., Heintz, J., Lopez-Berganza, J.A., Muro-Barrios, R., Egner, S.A., Espinosa-Marzal, R.M.: Stick–slip friction reveals hydrogel lubrication mechanisms. Langmuir. 34, 756–765 (2018). https://doi.org/10.1021/acs.langmuir.7b02834

    Article  Google Scholar 

  14. Shoaib, T., Espinosa-Marzal, R.M.: Insight into the viscous and adhesive contributions to hydrogel friction. Tribol. Lett. 66, 96 (2018). https://doi.org/10.1007/s11249-018-1045-7

    Article  Google Scholar 

  15. Gong, J.P.: Friction and lubrication of hydrogels -its richness and complexity. Soft Matter. 2, 544 (2006). https://doi.org/10.1039/b603209p

    Article  Google Scholar 

  16. Liu, J., Gong, J.: Hydrogel friction and lubrication. In: Spencer, N.D. (ed.) Aqueous Lubrication. World Scientific, Singapore (2014)

    Google Scholar 

  17. Benz, M., Chen, N., Israelachvili, J.: Lubrication and wear properties of grafted polyelectrolytes, hyaluronan and hylan, measured in the surface forces apparatus. J. Biomed. Mater. Res. 71A, 6–15 (2004). https://doi.org/10.1002/jbm.a.30123

    Article  Google Scholar 

  18. de Beer, S., Kutnyanszky, E., Schön, P.M., Vancso, G.J., Müser, M.H.: Solvent-induced immiscibility of polymer brushes eliminates dissipation channels. Nat. Commun. 5, 3781 (2014). https://doi.org/10.1038/ncomms4781

    Article  Google Scholar 

  19. de Beer, S., Kenmoé, G.D., Müser, M.H.: On the friction and adhesion hysteresis between polymer brushes attached to curved surfaces: rate and solvation effects. Friction. 3, 148–160 (2015). https://doi.org/10.1007/s40544-015-0078-2

    Article  Google Scholar 

  20. Li, A., Ramakrishna, S.N., Kooij, E.S., Espinosa-Marzal, R.M., Spencer, N.D.: Poly(acrylamide) films at the solvent-induced glass transition: adhesion, tribology, and the influence of crosslinking. Soft Matter. 8, 9092 (2012). https://doi.org/10.1039/c2sm26222c

    Article  Google Scholar 

  21. Nalam, P.C., Gosvami, N.N., Caporizzo, M.A., Composto, R.J., Carpick, R.W.: Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy. Soft Matter. 11, 8165–8178 (2015). https://doi.org/10.1039/C5SM01143D

    Article  Google Scholar 

  22. Baumberger, T., Caroli, C., Ronsin, O.: Self-healing slip pulses along a gel/glass interface. Phys. Rev. Lett. 88, 075509 (2002). https://doi.org/10.1103/PhysRevLett.88.075509

    Article  Google Scholar 

  23. Kim, J., Dunn, A.C.: Soft hydrated sliding interfaces as complex fluids. Soft Matter. 12, 6536–6546 (2016). https://doi.org/10.1039/C6SM00623J

    Article  Google Scholar 

  24. Reale, E.R., Dunn, A.C.: Poroelasticity-driven lubrication in hydrogel interfaces. Soft Matter. 13, 428–435 (2017). https://doi.org/10.1039/C6SM02111E

    Article  Google Scholar 

  25. De Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)

    Google Scholar 

  26. Cone, R.A.: Barrier properties of mucus. Adv. Drug Deliv. Rev. 61, 75–85 (2009). https://doi.org/10.1016/j.addr.2008.09.008

    Article  Google Scholar 

  27. Tominaga, T., Takedomi, N., Biederman, H., Furukawa, H., Osada, Y., Gong, J.P.: Effect of substrate adhesion and hydrophobicity on hydrogel friction. Soft Matter. 4, 1033 (2008). https://doi.org/10.1039/b716465c

    Article  Google Scholar 

  28. Kii, A., Xu, J., Gong, J.P., Osada, Y., Zhang, X.: Heterogeneous polymerization of hydrogels on hydrophobic substrate. J. Phys. Chem. B. 105, 4565–4571 (2001). https://doi.org/10.1021/jp003242u

    Article  Google Scholar 

  29. Sudre, G., Hourdet, D., Cousin, F., Creton, C., Tran, Y.: Structure of surfaces and interfaces of poly(N,N-dimethylacrylamide hydrogels. Langmuir. 28, 12282–12287 (2012). https://doi.org/10.1021/la301417x

    Article  Google Scholar 

  30. Pitenis, A.A., Urueña, J.M., Schulze, K.D., Nixon, R.M., Dunn, A.C., Krick, B.A., Sawyer, W.G., Angelini, T.E., Sawyer, G., Angelini, T.E.: Polymer fluctuation lubrication in hydrogel Gemini interfaces. Soft Matter. 10, 8955–8962 (2014). https://doi.org/10.1039/C4SM01728E

    Article  Google Scholar 

  31. Urueña, J.M., Pitenis, A.A., Nixon, R.M., Schulze, K.D., Angelini, T.E., Sawyer, W.G.: Mesh size control of polymer fluctuation lubrication in Gemini hydrogels. Biotribology. 1–2, 24–29 (2015). https://doi.org/10.1016/j.biotri.2015.03.001

    Article  Google Scholar 

  32. Urueña, J.M., McGhee, E.O., Angelini, T.E., Dowson, D., Sawyer, W.G., Pitenis, A.A.: Normal load scaling of friction in Gemini hydrogels. Biotribology. 13, 30–35 (2018). https://doi.org/10.1016/j.biotri.2018.01.002

    Article  Google Scholar 

  33. Dealy, J.M.: Weissenberg and Deborah numbers—their definition and use. Rheol. Bull. 79, 14–18 (2010)

    Google Scholar 

  34. Poole, R.: The Deborah and Weissenberg numbers. Rheol. Bull. 53, 32–39 (2012)

    Google Scholar 

  35. White, J.L.: Dynamics of viscoelastic fluids, melt fracture and the rheology of fiber spinning. J. Appl. Polym. Sci. 8, 2339–2357 (1964)

    Article  Google Scholar 

  36. Reiner, M.: The Deborah number. Phys. Today. 17, 62 (1964). https://doi.org/10.1063/1.3051374

    Article  Google Scholar 

  37. Schulze, K.D., Hart, S.M., Marshall, S.L., O’Bryan, C.S., Urueña, J.M., Pitenis, A.A., Sawyer, W.G., Angelini, T.E.: Polymer osmotic pressure in hydrogel contact mechanics. Biotribology. 11, 3–7 (2017). https://doi.org/10.1016/j.biotri.2017.03.004

    Article  Google Scholar 

  38. Hertz, H.: Über die Berührung fester elastischer Körper. J. für die reine Angew. Math. 92, 156–171 (1882)

    Google Scholar 

  39. Vogel, V., Sheetz, M.: Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006). https://doi.org/10.1038/nrm1890

    Article  Google Scholar 

  40. Luo, T., Mohan, K., Iglesias, P.A., Robinson, D.N.: Molecular mechanisms of cellular mechanosensing. Nat. Mater. 12, 1064–1071 (2013). https://doi.org/10.1038/nmat3772

    Article  Google Scholar 

  41. Pitenis, A.A., Urueña, J.M., Hart, S.M., O’Bryan, C.S., Marshall, S.L., Levings, P.P., Angelini, T.E., Sawyer, W.G.: Friction-induced inflammation. Tribol. Lett. 66, 81 (2018). https://doi.org/10.1007/s11249-018-1029-7

    Article  Google Scholar 

  42. Bhattacharjee, T., Kabb, C.P., O’Bryan, C.S., Urueña, J.M., Sumerlin, B.S., Sawyer, W.G., Angelini, T.E.: Polyelectrolyte scaling laws for microgel yielding near jamming. Soft Matter. 14, 1559–1570 (2018). https://doi.org/10.1039/C7SM01518F

    Article  Google Scholar 

  43. Beer, S., Müser, M.H., de Beer, S., Müser, M.H.: Alternative dissipation mechanisms and the effect of the solvent in friction between polymer brushes on rough surfaces. Soft Matter. 9, 7234 (2013). https://doi.org/10.1039/c3sm50491c

    Article  Google Scholar 

  44. Yashima, S., Takase, N., Kurokawa, T., Gong, J.P.: Friction of hydrogels with controlled surface roughness on solid flat substrates. Soft Matter. 10, 3192–3199 (2014). https://doi.org/10.1039/C3SM52883A

    Article  Google Scholar 

  45. Lee, S., Spencer, N.D.: Sweet, hairy, soft, and slippery. Science. 319, 575–576 (2008). https://doi.org/10.1126/science.1153273

    Article  Google Scholar 

  46. Bonnevie, E.D., Baro, V.J., Wang, L., Burris, D.L.: In situ studies of cartilage microtribology: roles of speed and contact area. Tribol. Lett. 41, 83–95 (2011). https://doi.org/10.1007/s11249-010-9687-0

    Article  Google Scholar 

  47. Moore, A.C., Burris, D.L.: An analytical model to predict interstitial lubrication of cartilage in migrating contact areas. J. Biomech. 47, 148–153 (2014). https://doi.org/10.1016/j.jbiomech.2013.09.020

    Article  Google Scholar 

  48. Moore, A.C., Burris, D.L.: Tribological rehydration of cartilage and its potential role in preserving joint health. Osteoarthr. Cartil. 25, 99–107 (2017). https://doi.org/10.1016/j.joca.2016.09.018

    Article  Google Scholar 

  49. Canal, T., Peppas, N.A.: Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J. Biomed. Mater. Res. 23, 1183–1193 (1989). https://doi.org/10.1002/jbm.820231007

    Article  Google Scholar 

  50. Schmitz, T.L., Action, J.E., Ziegert, J.C., Sawyer, W.G.: The difficulty of measuring low friction: uncertainty analysis for friction coefficient measurements. J. Tribol. 127, 673 (2005). https://doi.org/10.1115/1.1843853

    Article  Google Scholar 

  51. Burris, D.L., Sawyer, W.G.: Addressing practical challenges of low friction coefficient measurements. Tribol. Lett. 35, 17–23 (2009). https://doi.org/10.1007/s11249-009-9438-2

    Article  Google Scholar 

  52. Raviv, U., Laurat, P., Klein, J.: Fluidity of water confined to subnanometre films. Nature. 413, 51–54 (2001). https://doi.org/10.1038/35092523

    Article  Google Scholar 

  53. Raviv, U.: Fluidity of bound hydration layers. Science. 297, 1540–1543 (2002). https://doi.org/10.1126/science.1074481

    Article  Google Scholar 

  54. Lieleg, O., Vladescu, I., Ribbeck, K.: Characterization of particle translocation through mucin hydrogels. Biophys. J. 98, 1782–1789 (2010). https://doi.org/10.1016/j.bpj.2010.01.012

    Article  Google Scholar 

  55. Datta, S.S., Preska Steinberg, A., Ismagilov, R.F.: Polymers in the gut compress the colonic mucus hydrogel. Proc. Natl. Acad. Sci. 113, 7041–7046 (2016). https://doi.org/10.1073/pnas.1602789113

    Article  Google Scholar 

  56. Lai, S.K., Wang, Y.-Y., Wirtz, D., Hanes, J.: Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61, 86–100 (2009). https://doi.org/10.1016/j.addr.2008.09.012

    Article  Google Scholar 

  57. Crockett, R., Grubelnik, A., Roos, S., Dora, C., Born, W., Troxler, H.: Biochemical composition of the superficial layer of articular cartilage. J. Biomed. Mater. Res. Part A. 82A, 958–964 (2007). https://doi.org/10.1002/jbm.a.31248

    Article  Google Scholar 

  58. Larson, R.J.: Water content, organic content, and carbon and nitrogen composition of medusae from the northeast Pacific. J. Exp. Mar. Bio. Ecol. 99, 107–120 (1986). https://doi.org/10.1016/0022-0981(86)90231-5

    Article  Google Scholar 

  59. Lucas, C.H.: Biochemical composition of Aurelia aurita in relation to age and sexual maturity. J. Exp. Mar. Biol. Ecol. 183, 179–192 (1994). https://doi.org/10.1016/0022-0981(94)90086-8

    Article  Google Scholar 

  60. Sterner, O., Aeschlimann, R., Zürcher, S., Scales, C., Riederer, D., Spencer, N.D., Tosatti, S.G.P.: Tribological classification of contact lenses: from coefficient of friction to sliding work. Tribol. Lett. 63, 9 (2016). https://doi.org/10.1007/s11249-016-0696-5

    Article  Google Scholar 

  61. Erdemir, A., Martin, J.-M.: Superlubricity. Elsevier, Amsterdam (2007)

    Google Scholar 

  62. Milner, S.T.: Hydrodynamic penetration into parabolic brushes. Macromolecules. 24, 3704–3705 (1991). https://doi.org/10.1021/ma00012a036

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge research funding from Alcon Laboratories, and appreciate the many scholarly discussions on lubrication and scaling concepts in gels with Profs. Thomas Angelini, David Burris, Alison Dunn, and Cyrus Safinya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Gregory Sawyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitenis, A.A., Sawyer, W.G. Lubricity of High Water Content Aqueous Gels. Tribol Lett 66, 113 (2018). https://doi.org/10.1007/s11249-018-1063-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1063-5

Keywords

Navigation