Skip to main content
Log in

High Temperature Wear Behaviors of TiAl–TiB2 Composites

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this article, the dry-sliding tribological behaviors of TiAl-based composites reinforced with 20 and 40 vol% in situ synthesized TiB2 produced by a hot-press sintering process were investigated from room temperature (RT) to 800 °C. The results show that the high-temperature wear resistance of the TiAl alloy is improved by adding the TiB2 particles under all the testing temperatures, and the more the TiB2 reinforcement, the better the wear resistance is. This improvement is more significant at 600 °C and above, especially for the composite with 40 vol% TiB2, whose wear rate is 4–10 times lower than TiAl at 600 and 800 °C. Accordingly, the wear mechanisms transfer from abrasion wear at low and moderate temperature (RT, 200 and 400 °C) to oxidation wear at high temperature (600 and 800 °C). In addition to the brittle-to-ductile transition of the materials and oxide layer formation, the phase transition of Al2O3 and TiO2 may be partly responsible for the promising wear resistance at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen, G., Peng, Y., Zheng, G., Qi, Z., Wang, M., Yu, H., et al.: Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat. Mater. 15, 876–881 (2016)

    Article  Google Scholar 

  2. Xu, Z., Shi, X., Zhai, W., Yao, J., Song, S., Zhang, Q.: Preparation and tribological properties of TiAl matrix composites reinforced by multilayer graphene. Carbon 67, 168–177 (2014)

    Article  Google Scholar 

  3. Xu, Z., Zhang, Q., Jing, P., Zhai, W.: High-temperature tribological performance of TiAl matrix composites reinforced by multilayer graphene. Tribol. Lett. 58, 1–9 (2015)

    Article  Google Scholar 

  4. Cheng, J., Yang, J., Zhang, X., Zhong, H., Ma, J., Li, F., et al.: High temperature tribological behavior of a Ti–46Al–2Cr–2Nb intermetallics. Intermetallics 31, 120–126 (2012)

    Article  Google Scholar 

  5. Li, Z.-H., Cheng, X.-H.: Effects of equal channel angular extrusion (ECAE) process on the mechanical property and erosion resistance of Ti–5Al–5Mo–5V–3Cr alloy. Tribol. Lett. 62, 1–6 (2016)

    Article  Google Scholar 

  6. Qiu, J., Liu, Y., Meng, F., Baker, I., Munroe, P.R.: Effects of environment on dry sliding wear of powder metallurgical Ti–47Al–2Cr–2Nb–0.2W. Intermetallics 53, 10–19 (2014)

    Article  Google Scholar 

  7. Li, C.X., Xia, J., Dong, H.: Sliding wear of TiAl intermetallics against steel and ceramics of Al2O3, Si3N4 and WC/Co. Wear 261, 693–701 (2006)

    Article  Google Scholar 

  8. Noda, T.: Application of cast gamma TiAl for automobiles. Intermetallics 6, 709–713 (1998)

    Article  Google Scholar 

  9. Suan L.D., Bradlery A.L., Miyoshi, K., et. al.: Durability assessment of gamma TiAl-final report, NASA/TM, 212303 (2004)

  10. Corte, C.D., Sliney, H.E.: Composition optimization of self-lubricating chromium-carbide-based composite coatings for use to 760 °C. ASLE Trans. 30, 77–83 (1987)

    Article  Google Scholar 

  11. Sun, T., Wang, Q., Sun, D.L., Wu, G.H., Na, Y.: Study on dry sliding friction and wear properties of Ti2AlN/TiAl composite. Wear 268, 693–699 (2010)

    Article  Google Scholar 

  12. Shi, X., Xu, Z., Wang, M., Zhai, W., Yao, J., Song, S., et al.: Tribological behavior of TiAl matrix self-lubricating composites containing silver from 25 to 800 °C. Wear 303, 486–494 (2013)

    Article  Google Scholar 

  13. NasiriVatan, H., Ebrahimi-Kahrizsangi, R., Asgarani, M.K.: Tribological performance of PEO-WC nanocomposite coating on Mg alloys deposited by plasma electrolytic oxidation. Tribol. Int. 98, 253–260 (2016)

    Article  Google Scholar 

  14. Radhika, N., Raghu, R.: Dry sliding wear behaviour of aluminium Al–Si12Cu/TiB2 metal matrix composite using response surface methodology. Tribol. Lett. 59, 1–9 (2015)

    Article  Google Scholar 

  15. Emamy, M., Mahta, M., Rasizadeh, J.: Formation of TiB2 particles during dissolution of TiAl3 in Al–TiB2 metal matrix composite using an in situ technique. Compos. Sci. Technol. 66, 1063–1066 (2006)

    Article  Google Scholar 

  16. Cheng, J., Yu, Y., Fu, L., Li, F., Qiao, Z., Li, J., et al.: Effect of TiB2 on dry-sliding tribological properties of TiAl intermetallics. Tribol. Int. 62, 91–99 (2013)

    Article  Google Scholar 

  17. Hu, D.: Effect of boron addition on tensile ductility in lamellar TiAl alloys. Intermetallics 10, 851–858 (2002)

    Article  Google Scholar 

  18. Dorri Moghadam, A., Omrani, E., Menezes, P.L., Rohatgi, P.K.: Effect of In-situ processing parameters on the mechanical and tribological properties of self-lubricating hybrid aluminum nanocomposites. Tribol. Lett. 62, 1–10 (2016)

    Article  Google Scholar 

  19. Niu, H.Z., Xiao, S.L., Kong, F.T., Zhang, C.J., Chen, Y.Y.: Microstructure characterization and mechanical properties of TiB2/TiAl in situ composite by induction skull melting process. Mater. Sci. Eng. A 532, 522–527 (2012)

    Google Scholar 

  20. Van Meter, M., Kampe, S., Christodoulou, L.: Mechanical properties of near-γ titanium aluminides reinforced with high volume percentages of TiB2. Scr. Mater. 34, 1251–1256 (1996)

    Article  Google Scholar 

  21. Shu, S., Xing, B., Qiu, F., Jin, S., Jiang, Q.: Comparative study of the compression properties of TiAl matrix composites reinforced with nano-TiB2 and nano-Ti5Si3 particles. Mater. Sci. Eng. A 560, 596–600 (2013)

    Article  Google Scholar 

  22. Song, X.G., Cao, J., Liu, Y.Z., Feng, J.C.: Brazing high Nb containing TiAl alloy using TiNi–Nb eutectic braze alloy. Intermetallics 22, 136–141 (2012)

    Article  Google Scholar 

  23. Inman, I.A., Rose, S.R., Datta, P.K.: Studies of high temperature sliding wear of metallic dissimilar interfaces II: Incoloy MA956 versus Stellite 6. Tribol. Int. 39, 1361–1375 (2006)

    Article  Google Scholar 

  24. Birol, Y.: High temperature sliding wear behaviour of Inconel 617 and Stellite 6 alloys. Wear 269, 664–671 (2010)

    Article  Google Scholar 

  25. Bagwell, R.B., Messing, G.L.: Effect of seeding and water vapor on the nucleation and growth of α-Al2O3 from γ-Al2O3. J. Am. Ceram. Soc. 82, 825–832 (1999)

    Article  Google Scholar 

  26. Dynys, F.W., Halloran, J.W.: Alpha alumina formation in alum-derived gamma alumina. J. Am. Ceram. Soc. 65, 442–448 (1982)

    Article  Google Scholar 

  27. Zhu, H.Y., Lan, Y., Gao, X., Ringer, S.P., Zheng, Z., Song, D.Y., et al.: Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. J. Am. Chem. Soc. 127, 6730–6736 (2005)

    Article  Google Scholar 

  28. Wang, S., Ma, J., Zhu, S., Cheng, J., Qiao, Z., Yang, J., et al.: High temperature tribological properties of Ti3AlC2 ceramic against SiC under different atmospheres. Mater. Des. 67, 188–196 (2015)

    Article  Google Scholar 

  29. Cheng, J., Ma, J., Yu, Y., Fu, L., Qiao, Z., Yang, J., et al.: Vacuum tribological properties of a Ti–46Al–2Cr–2Nb intermetallics. J. Tribol. 136, 021604 (2014)

    Article  Google Scholar 

  30. Cheng, J., Li, F., Qiao, Z., Zhu, S., Yang, J., Liu, W.: The role of oxidation and counterface in the high temperature tribological properties of TiAl intermetallics. Mater. Des. 84, 245–253 (2015)

    Article  Google Scholar 

  31. Aryasomayajula, A., Randall, N.X., Gordon, M.H., Bhat, D.: Tribological and mechanical properties of physical vapor deposited alpha alumina thin film coating. Thin Solid Films 517, 819–823 (2008)

    Article  Google Scholar 

  32. Costa, T.M., Gallas, M.R., Benvenutti, E.V., da Jornada, J.A.: Study of nanocrystalline γ-Al2O3 produced by high-pressure compaction. J. Phys. Chem. B 103, 4278–4284 (1999)

    Article  Google Scholar 

  33. Lin, J., Wang, B., Sproul, W.D., Ou, Y., Dahan, I.: Anatase and rutile TiO2 films deposited by arc-free deep oscillation magnetron sputtering. J. Phys. D Appl. Phys. 46, 084008 (2013)

    Article  Google Scholar 

  34. Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981 (1953)

    Article  Google Scholar 

  35. Dyck, T., Bund, A.: An adaption of the Archard equation for electrical contacts with thin coatings. Tribol. Int. 102, 1–9 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (51505459 and 51675510) and the National Basic Research Program of China (2013CB632300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Cheng or Jun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Cheng, J., Zhu, S. et al. High Temperature Wear Behaviors of TiAl–TiB2 Composites. Tribol Lett 65, 144 (2017). https://doi.org/10.1007/s11249-017-0924-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0924-7

Keywords

Navigation