Skip to main content
Log in

On the Effect of Contact Geometry on Fretting Fatigue Life Under Cyclic Contact Loading

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Most of the previous studies on fretting fatigue have been accomplished under constant contact load condition, and a less attention has been paid to cyclic contact load. That is the case in many engineering applications such as bearing cap bolted joints of the V-type engines and dovetail joint of turbines. In this study, the effect of contact geometry on fretting fatigue behavior of Al7075-T6 under cyclic normal contact loading is investigated by experiment, numerical simulation and analysis. Two contact types including flat-on-flat and cylinder-on-flat are considered in this study. The crack initiated at a lower cycle for cylinder-on-flat contacts. It was found that in comparison with the constant contact loading condition, the cyclic contact loadings have more damaging effect on fretting fatigue life, particularly for cylinder-on-flat contact. With the increase in the pad width, fretting fatigue life increased for flat and cylindrical pads, particularly for high cycle fatigue (HCF) conditions. Examination of the fretting scars was performed using optical microscopy. Crack propagation life was determined by numerical simulation using the commercial FE codes ABAQUS® and FRANC2D/L®. Crack initiation life was calculated by a combination of numerical simulation and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Waterhouse, R.B.: Fretting Fatigue. Elsevier, Amsterdam (1981)

    Google Scholar 

  2. Varenberg, M., Etsion, I., Halperin, G.: Slip index: a new unified approach to fretting. Tribol. Lett. 17(3), 569–573 (2004)

    Article  Google Scholar 

  3. Lykins, C.D., Mall, S., Jain, V.K.: Combined experimental–numerical investigation of fretting fatigue crack initiation. Int. J. Fatigue 23(8), 703–711 (2001)

    Article  Google Scholar 

  4. Iwabuchi, A., Lee, J.W., Uchidate, M.: Synergetic effect of fretting wear and sliding wear of Co-alloy and Ti-alloy in Hanks solution. Wear 263, 492–500 (2007)

    Article  Google Scholar 

  5. Ramalho, A., Celis, J.P.: Fretting laboratory tests: analysis of the mechanical response of test rigs. Tribol. Lett. 14, 187–196 (2003)

    Article  Google Scholar 

  6. Quraishi, S., Khonsari, M., Baek, D.: A thermodynamic approach for predicting fretting fatigue life. Tribol. Lett. 19(3), 169–175 (2005)

    Article  Google Scholar 

  7. Zhang, T., McHugh, P., Leen, S.: Finite element implementation of multi-axial continuum damage mechanics for plain and fretting fatigue. Int. J. Fatigue 44, 260–272 (2012)

    Article  Google Scholar 

  8. Aghdam, A., Beheshti, A., Khonsari, M.: On the fretting crack nucleation with provision for size effect. Tribol. Int. 47, 32–43 (2012)

    Article  Google Scholar 

  9. Hojjati-Talemi, R., Wahab, M.A.: Fretting fatigue crack initiation lifetime predictor tool: using damage mechanics approach. Tribol. Lett. 52, 11–25 (2013)

    Article  Google Scholar 

  10. Aghdam, A.B., Beheshti, A., Khonsari, M.M.: Prediction of crack nucleation in rough line-contact fretting via continuum damage mechanics approach. Tribol. Lett. 53, 641–653 (2014)

    Article  Google Scholar 

  11. Ferjaoui, A., Yue, T., Abdel Wahab, M., Hojjati Talemi, R.: Prediction of fretting fatigue crack initiation in double lap bolted joint. Int. J. Fatigue 73, 66–76 (2015)

    Article  Google Scholar 

  12. Hattori, T., Nakamura, M., Watanabe, T.: Simulation of fretting-fatigue life by using stress-singularity parameters and fracture mechanics. Tribol. Int. 36(2), 87–97 (2003)

    Article  Google Scholar 

  13. Munoz, S., Navarro, C., Dominguez, J.: Application of fracture mechanics to estimate fretting fatigue endurance curves. Eng. Fract. Mech. 74(14), 2168–2186 (2007)

    Article  Google Scholar 

  14. Giner, E., Sukumar, N., Denia, F., Fuenmayor, F.: Extended finite element method for fretting fatigue crack propagation. Int. J. Solids Struct. 45(22), 5675–5687 (2008)

    Article  Google Scholar 

  15. Sabsabi, M., Giner, E., Fuenmayor, F.: Experimental fatigue testing of a fretting complete contact and numerical life correlation using x-fem. Int. J. Fatigue 33(6), 811–822 (2011)

    Article  Google Scholar 

  16. Martínez, J.C., Useche, L.V.V., Wahab, M.A.: Numerical prediction of fretting fatigue crack trajectory in a railway axle using XFEM. Int. J. Fatigue 100(1), 32–49 (2017)

    Article  Google Scholar 

  17. Hojjati Talemi, R., Abdel Wahab, M., De Pauw, J., De Baets, P.: Prediction of fretting fatigue crack initiation and propagation lifetime for cylindrical contact configuration. Tribol. Int. 76, 73–91 (2014)

    Article  Google Scholar 

  18. Kumar, D., Biswas, R., Poh, L.H., Abdel Wahab, M.: Fretting fatigue stress analysis in heterogeneous material using direct numerical simulations in solid mechanics. Tribol. Int. 109, 124–132 (2017)

    Article  Google Scholar 

  19. Bhatti, N.A., Abdel Wahab, M.: Finite element analysis of fretting fatigue under out of phase loading conditions. Tribol. Int. 109, 552–562 (2017)

    Article  Google Scholar 

  20. Yang, B., Mall, S.: Mechanics of two-stage crack growth in fretting fatigue. Eng. Fract. Mech. 75(6), 1507–1515 (2008)

    Article  Google Scholar 

  21. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  22. Magaziner, R., Jin, O., Mall, S.: Slip regime explanation of observed size effects in fretting. Wear 257, 190–197 (2004)

    Article  Google Scholar 

  23. Araujo, J.A., Nowel, D., Vivacqua, R.C.: The use of multi-axial fatigue models to predict fretting fatigue life of components subjected to different contact stress fields. Fatigue Fract. Eng. Mater. Struct. 27, 967–978 (2004)

    Article  Google Scholar 

  24. Araújo, J.A., Nowell, D.: Analysis of pad size effects in fretting fatigue using short crack arrest methodology. Int. J. Fatigue 21, 947–956 (1999)

    Article  Google Scholar 

  25. Lykins, C.D., Mall, S., Jain, V.: A shear stress-based parameter for fretting fatigue crack initiation. Fatigue Fract. Eng. Mater. Struct. 24, 461–473 (2001)

    Article  Google Scholar 

  26. Araujo, J.A., Nowell, D.: The effect of rapidly varying contact stress fields on fretting fatigue. Int. J. Fatigue 24, 763–775 (2002)

    Article  Google Scholar 

  27. Farrahi, G.H., Majzoobi, G.H., Chinekesh, H.: Effect of contact geometry on fretting fatigue life of aluminium alloy 2024-T3. Indian J. Eng. Mater. Sci. 12, 331–336 (2005)

    Google Scholar 

  28. Navarro, C., Muñoz, S., Domínguez, J.: On the use of multi-axial fatigue criteria for fretting fatigue life assessment. Int. J. Fatigue 30, 32–44 (2008)

    Article  Google Scholar 

  29. Majzoobi, G.H., Minaii, K.: An investigation into the effect of contact geometry on the rotary bending fretting fatigue life of Al 7075-T6. Proc. Inst. Mech. Eng. J. J. Eng. Tribol. 227(11), 1285–1296 (2013)

    Article  Google Scholar 

  30. Pereira, K., Bordas, S., Tomar, S., Trobec, R., Depolli, M., Kosec, G., Abdel Wahab, M.: On the convergence of stresses in fretting fatigue. Materials 9(8), 639 (2016)

    Article  Google Scholar 

  31. Mall, S., Jutte, A.J., Fuchs, S.P., Copeland, D.P.: Investigation into Variable Contact Load Effects on Fretting Fatigue Behavior of Ti-6Al-4V. XXI ICTAM, Warsaw (2004)

    Google Scholar 

  32. Li, X., Jianwei, Y., Meihong, L., Zhengxing, Z.: An investigation on fretting fatigue mechanism under complex cyclic loading conditions. Int. J. Fatigue 88, 227–235 (2016)

    Article  Google Scholar 

  33. Abbasi, F., Majzoobi, G.H.: Effect of contact pressure on fretting fatigue behavior under cyclic contact loading. Surf. Rev. Lett. 25(3), 1–14 (2018)

    Google Scholar 

  34. Abbasi, F., Majzoobi, G.H.: An investigation into the effect of elevated temperatures on fretting fatigue response under cyclic normal contact loading. Theor. Appl. Fract. Mech. (2017). doi:10.1016/j.tafmec.2017.07.018

    Google Scholar 

  35. Hibbitt, H., Karlsson, B., Sorensen, P.: Abaqus analysis user’s manual version 6.12. Dassault Systtemes Simulia Corp., Providence (2012)

    Google Scholar 

  36. FRANC2D/L: A crack propagation simulator for plane layered structures. Cornell University, Ithaca (2010)

    Google Scholar 

  37. Majzoobi, G.H., Hojjati, R., Nematian, M., Zalnejad, E., Ahmadkhani, A.R.: A new device for fretting fatigue testing. Trans. Indian Inst. Met. 63, 493–497 (2010)

    Article  Google Scholar 

  38. ASTM-E8/E8M-16a: Standard test methods for tension testing of metallic materials. Annual book of ASTM standards 3, West Conshohocken, PA (2016)

  39. Fatemi, A., Plaseied, A., Khosrovaneh, A.K., Tanner, D.: Application of bi-linear log–log S–N model to strain-controlled fatigue data of aluminum alloys and its effect on life predictions. Int. J. Fatigue 27(9), 1040–1050 (2005)

    Article  Google Scholar 

  40. Madge, J.J., Leen, S.B., McColl, I.R., Shipway, P.H.: Contact-evolution based prediction of fretting fatigue life: effect of slip amplitude. Wear 262(9), 1159–1170 (2007)

    Article  Google Scholar 

  41. Naidu, N.K.R., Raman, S.G.S.: Effect of shot blasting on plain fatigue and fretting fatigue behaviour of Al–Mg–Si alloy AA6061. Int. J. Fatigue 27(3), 323–331 (2005)

    Article  Google Scholar 

  42. McCarthy, O.J., McGarry, J.P., Leen, S.B.: Microstructure-sensitive prediction and experimental validation of fretting fatigue. Wear 305(1), 100–114 (2013)

    Article  Google Scholar 

  43. Carter, B.J., Schenck, E.C., Wawrzynek, P.A., Ingraffea, A.R., Barlow, K.W.: Three-dimensional simulation of fretting crack nucleation and growth. Eng. Fract. Mech. 96, 447–460 (2012)

    Article  Google Scholar 

  44. Majzoobi, G.H., Jaleh, M.: Duplex surface treatments on AL7075-T6 alloy against fretting fatigue behavior by application of titanium coating plus nitriding. Mater. Sci. Eng., A 452–453, 673–681 (2007)

    Article  Google Scholar 

  45. El Haddad, M.H., Topper, T.H., Smith, K.N.: Prediction of non-propagating cracks. Eng. Fract. Mech. 11(3), 573–584 (1979)

    Article  Google Scholar 

  46. Navarro, C., García, M., Domínguez, J.: A procedure for estimating the total life in fretting fatigue. Fatigue Fract. Eng. Mater. Struct. 26(5), 459–468 (2003)

    Article  Google Scholar 

  47. Erdogan, F., Sih, G.C.: On the crack extension in plates under plane loading and transverse shear. ASME J. Basic Eng. 85(4), 519–527 (1963)

    Article  Google Scholar 

  48. Paris, P., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. 85(4), 528–533 (1963)

    Article  Google Scholar 

  49. Chen, W.R., Keer, L.M.: Fatigue crack growth in mixed mode loading. J. Eng. Mater. Tech. 113(2), 222–227 (1991)

    Article  Google Scholar 

  50. Vingsbo, O., Soderberg, S.: On fretting maps. Wear 126, 131–147 (1988)

    Article  Google Scholar 

  51. Waterhouse, R.B.: Fretting fatigue. Int. Mater. Reviews 37(1), 77–98 (1992)

    Article  Google Scholar 

  52. Nakazawa, K., Sumita, M., Maruyama, N.: Effect of relative slip amplitude on fretting fatigue of high strength steel. Fatigue Fract. Eng. Mater. Struct. 17, 751–759 (1994)

    Article  Google Scholar 

  53. Jayaprakash, M., Mutoh, Y., Asai, K., Ichikawa, K., Sukarai, S.: Effect of contact pad rigidity on fretting fatigue behavior of NiCrMoV turbine steel. Int. J. Fatigue 32(11), 1788–1794 (2010)

    Article  Google Scholar 

  54. Giner, E., Sabsabi, M., Rodenas, J.J., Fuenmayor, F.J.: Direction of crack propagation in a complete contact fretting-fatigue problem. Int. J. Fatigue 58, 172–180 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Majzoobi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majzoobi, G.H., Abbasi, F. On the Effect of Contact Geometry on Fretting Fatigue Life Under Cyclic Contact Loading. Tribol Lett 65, 125 (2017). https://doi.org/10.1007/s11249-017-0906-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0906-9

Keywords

Navigation