Skip to main content

Advertisement

Log in

Analysis of Friction-Induced Vibration Leading to Brake Squeal Using a Three Degree-of-Freedom Model

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Friction-induced vibration is a common phenomenon in nature and thus has attracted many researchers’ attention. Many of the mathematical models that have been proposed on the basis of mode coupling principle, however, cannot be utilized directly to analyse the generation of friction-induced vibration that occurs between two bodies because of a difficulty relating model parameters to definite physical meaning for real friction pairs. In this paper, a brake squeal experiment is firstly carried out by using a simple beam-on-disc laboratory apparatus. Experimental results show that brake squeal correlates with the bending mode of the beam and the nodal diameter out-of-plane mode of the disc as well as the cantilever length of the beam. Then, a specific three degree-of-freedom dynamic model is developed of the beam-on-disc system and the vibration behaviour is simulated by using the complex eigenvalue analysis method and a transient response analysis. Numerical simulation shows that the bending mode frequency of the beam a little greater than the frequency of the nodal diameter out-of-plane mode and a specific incline angle of the leading area to the normal line of the disc as well as a certain friction coefficient, are necessary conditions for the mode coupling of a frictional system. Results also show that when the frictional system is transited from a steady state to an unstable state for the variation of parameters, its kinetic and potential energy increase with time due to continuous feed-in energy from the friction force while the dynamic responses of the system change from the beating oscillation to the divergent, which leads to the friction-induced vibration and squeal noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Akay, A.: Acoustics of friction. J. Acoust. Soc. Am. 111(4), 1525–1548 (2002)

    Article  Google Scholar 

  2. Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Automotive disc brake squeal. J. Sound Vib. 267(1), 105–166 (2003)

    Article  Google Scholar 

  3. Chen, F.: Automotive disk brake squeal: an overview. Int. J. Veh. Des. 51(1/2), 39–72 (2009)

    Article  Google Scholar 

  4. Bowden, F.P., Leben, L.: The nature of sliding and the analysis of friction. Proc. R. Soc. Lond. A 169(938), 371–379 (1939)

    Article  Google Scholar 

  5. Papinniemi, A., Lai, J.C.S., Zhao, J., Loader, L.: Brake squeal: a literature review. Appl. Acoust. 63(4), 391–400 (2002)

    Article  Google Scholar 

  6. Zuleeg, J.: How to measure, prevent, and eliminate stick–slip and noise generation with lubricants. SAE Technical Paper 2015-01-2259 (2015). doi:10.4271/2015-01-2259

  7. Spurr, R.: A theory of brake squeal. Proc. Automob. Div. Inst. Mech. Eng. 1, 33–40 (1961)

    Google Scholar 

  8. Qiao, S.L., Ibrahim, R.A.: Stochastic dynamics of systems with friction-induced vibration. J. Sound Vib. 223(1), 115–140 (1999)

    Article  Google Scholar 

  9. Koenigsberger, F., Tlusty, J.: Machine Tool Structures, vol. 1. Pergamon Press, Oxford (1970)

    Google Scholar 

  10. North, M.R.: Frictionally induced, self excited vibrations in a disc brake system. Ph.D. Thesis, Loughborough University (1972)

  11. North, M.R.: Disc brake squeal, a theoretical model. Motor Industry Research. Association (MIRA) Research Report 1972/5 (1972)

  12. North, M.R.: Disc brake squeal. In: IMechE Conference on Braking of Road Vehicles. Paper C38/76, pp. 169–176 (1976)

  13. Earles, S.W.E., Soar, G.B.: Squeal noise in disc brakes. In: IMechE Symposium on Vibration and Noise in Motor Vehicles, Paper C101/71, pp. 61–69 (1971)

  14. Earles, S.W.E., Lee, C.K.: Instabilities arising from the frictional interaction of a pin-disc system resulting in noise generation. ASME J. Eng. Ind. 98(1), 81–86 (1976)

    Article  Google Scholar 

  15. Hamabe, T., Yamazaki, I., Yamada, K., Matsui, H.: Study of a method for reducing drum brake squeal. SAE Technical Paper 1999-01-0144 (1999). doi:10.4271/1999-01-0144

  16. Hoffmann, N., Fischer, M., Allgaier, R., Gaul, L.: A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech. Res. Commun. 29(4), 197–205 (2002)

    Article  Google Scholar 

  17. Schroth, R., Hoffmann, N., Swift, R.: Mechanism of brake squeal from theory to experimentally measured mode coupling. In: Proceedings of the 22nd International Modal Analysis Conference (IMAC XXII) (2004)

  18. Millner, N.: An analysis of disc brake squeal. SAE Technical Paper 780332 (1978). doi:10.4271/780332

  19. Ahmed, I.: Analysis of ventilated disc brake squeal using a 10 DOF model. SAE Technical Paper 2012-01-1827 (2012). doi:10.4271/2012-01-1827

  20. Papinniemi, A.: Vibro-acoustic studies of brake squeal noise. Ph.D. Thesis, The University of New South Wales, Australian Defence Force Academy (2007)

  21. Oura, Y., Kurita, Y., Matsumura, Y., Tamura, T.: Surface contact analysis model for squeal on disk brake. Trans. Jpn. Soc. Mech. Eng. C 73(731), 1977–1984 (2007). (in Japanese)

    Article  Google Scholar 

  22. Oura, Y., Kurita, Y., Matsumura, Y., Nishizawa, Y.: Influence of distributed stiffness in contact surface on disk brake squeal. SAE Technical Paper 2008-01-2584 (2008). doi:10.4271/2008-01-2584

  23. Ouyang, H., Nack, W., Yuan, Y., Chen, F.: Numerical analysis of automotive disc brake squeal: a review. Int. J. Veh. Noise Vib. 1, 207–231 (2005)

    Article  Google Scholar 

  24. Tuchinda, A., Hoffmann, N.P., Ewins, D.J., Keiper, W.: Mode lock-in characteristics and instability study of the pin-on-disc system. In: Proceedings of the 19th International Modal Analysis Conference (IMAC XIX), pp. 71–77 (2001)

  25. Tuchinda A., Hoffman N. P., Ewins D. J.: Effect of pin finite width on instability of pin-on disc systems. In: Proceedings of the 20th International Modal Analysis Conference (IMAC XX), pp. 552–557 (2002)

  26. Allgaier, R., Gaul, L., Keiper, W., Willner, K., Hoffman, N.: A study on brake squeal using a beam-on-disc. In: Proceedings of the 20th International Modal Analysis Conference (IMAC XX), pp. 528–534 (2002)

  27. Massi, F., Giannini, O.: Extension of a modal instability theory to real brake systems. In: Proceedings of the 23rd International Modal Analysis Conference (IMAC XXIII) (2005)

  28. Oliviera, G., Akay, A., Massi, F.: Experimental analysis of brake squeal noise on a laboratory brake setup. J. Sound Vib. 292, 1–20 (2006)

    Article  Google Scholar 

  29. Giannini, O., Massi, F.: Characterization of the high frequency squeal on a laboratory brake set-up. J. Sound Vib. 310, 394–408 (2008)

    Article  Google Scholar 

  30. Massi, F., Giannini, O.: Effect of damping on the propensity of squeal instability: an experimental investigation. J. Acoust. Soc. Am. 123(4), 2017–2023 (2008)

    Article  Google Scholar 

  31. Akay, A., Giannini, O., Massi, F., Sestieri, A.: Disc brake squeal characterization through simplified test rigs. Mech. Syst. Signal Process. 23(8), 2590–2607 (2009)

    Article  Google Scholar 

  32. AbuBakar, A.R., Ouyang, H.: Complex eigenvalue analysis and dynamic transient analysis in predicting disc brake squeal. Int. J. Veh. Noise Vib. 2(2), 143–155 (2006)

    Article  Google Scholar 

  33. Ouyang, H., Cao, Q., Mottershead, J.E., Treyde, T.: Vibration and squeal of a disc brake: modelling and experimental results. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 217(10), 867–875 (2003)

    Article  Google Scholar 

  34. Cao, Q., Ouyang, H., Friswell, M.I., Mottershead, J.E.: Linear eigenvalue analysis of the disc-brake squeal problem. Int. J. Numer. Methods Eng. 61(9), 1546–1563 (2004)

    Article  Google Scholar 

  35. Will, J.: CAE-based robustness evaluation of brake systems. SAE Technical Paper 2015-01-2656 (2015). doi:10.4271/2015-01-2656

  36. Zhang, Z., Oberst, S., Lai, J.C.S.: On the potential of uncertainty analysis for prediction of brake squeal propensity. J. Sound Vib. 377(1), 123–132 (2016)

    Article  Google Scholar 

  37. Fritz, G., Sinou, J.-J., Duffal, J.-M., Jézéquel, L.: Effects of damping on brake squeal coalescence patterns—application on a finite element model. Mech. Res. Commun. 34(2), 181–190 (2007)

    Article  Google Scholar 

  38. Hoffmann, N., Gaul, L.: Effects of damping on mode-coupling instability in friction induced oscillations. Z. Angew. Math. Mech. 83(8), 524–534 (2003)

    Article  Google Scholar 

  39. Pennacchi, P., Vania, A.: Analysis of the instability phenomena caused by steam in high pressure turbines. Shock Vib. 18(4), 593–612 (2011)

    Article  Google Scholar 

  40. Pharr, G.M., Oliver, W.C., Brotzen, F.R.: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7(3), 613–617 (1992)

    Article  Google Scholar 

  41. Guan, D., Huang, J.: The method of feed-in energy on disc brake squeal. J. Sound Vib. 261(2), 297–307 (2003)

    Article  Google Scholar 

  42. Zhang, L., Wu, J., Meng, D.: Relationship between two friction-induced squeal mechanisms of mode coupling and energy feed-in theories. J. Tongji Univ. (Nat. Sci.) 43(10), 1562–1569 (2015). (in Chinese)

    Google Scholar 

  43. Hoffmann, N., Gaul, L.: Non-conservative beating in sliding friction affected systems: transient amplification of vibrational energy and a technique to determine optimal initial conditions. Mech. Syst. Signal Process. 18(3), 611–623 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Production and Research Prospective Joint Research Project of Jiangsu Province (Grant No. BY2016065-40); the Six Talent Peaks Project in Jiangsu Province (Grant No. 2014-ZBZZ-025); the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant No. 15KJB460017); the Jiangsu Planned Project for Postdoctoral Research Funds (Grant No. 1601062C) and Jiangsu Provincial Government Scholarship for Overseas Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongming Lyu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, H., Walsh, S.J., Chen, G. et al. Analysis of Friction-Induced Vibration Leading to Brake Squeal Using a Three Degree-of-Freedom Model. Tribol Lett 65, 105 (2017). https://doi.org/10.1007/s11249-017-0887-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0887-8

Keywords

Navigation