Skip to main content
Log in

Finite Element Simulation of the Mechanical and Thermal Behaviors of a Disk Drive Head Contacting a Disk Asperity

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Here we present results from finite element analysis mockups for the stresses, strains, and the frictional flash temperatures that occur when a recording head in a disk drive impacts an asperity bump on the rotating disk surface. These simulations also included the very thin carbon protective overcoats that are routinely used to protect the head and disk media surfaces during this impact, allowing us to predict more accurately the wear resistances for these surfaces during these types of impacts. Using these simulations, we are able to perform parametric studies of how the tribological performance of these interfaces is affected by amount of interference, asperity width, material properties, and frictional coefficients. Good agreement is found between these simulation results for flash temperatures from frictional heating and the measured values from a previous experimental study from our laboratory for the temperature rise at the embedded contact sensor within the recording head.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chuanwei, Z., Ovcharenko, A., Min, Y., Knutson, N., Talke, F.E.: Investigations of thermal asperity sensors in thermal flying-height control sliders. IEEE Trans. Magn. 50(11), 3303104 (2014). doi:10.1109/TMAG.2014.2321558

    Google Scholar 

  2. Stupp, S.E., Baldwinson, M., McEwen, P., Crawford, T.M., Rogers, C.T.: Thermal asperity trends. IEEE Trans. Magn. 35(2), 752–757 (1999)

    Article  Google Scholar 

  3. Yuan, Z., Liu, B.: Anti-thermal asperity head: design and performance analysis. J. Magn. Magn. Mater. 209(1), 166–168 (2000)

    Article  Google Scholar 

  4. Gupta, B.K., Young, K., Chilamakuri, S.K., Menon, A.K.: On the thermal behavior of giant magnetoresistance heads. J. Tribol. 123(2), 380–387 (2001)

    Article  Google Scholar 

  5. Rajauria, S., Canchi, S.V., Schreck, E., Marchon, B.: Nanoscale wear and kinetic friction between atomically smooth surfaces sliding at high speeds. Appl. Phys. Lett. 106(8), 081604 (2015). doi:10.1063/1.4913465

    Article  Google Scholar 

  6. Itoh, J., Sasaki, Y., Higashi, K., Takami, H., Shikanai, T.: An experimental investigation for continuous contact recording technology. IEEE Trans. Magn. 37(4), 1806–1808 (2001)

    Article  Google Scholar 

  7. Mate, C.M., Dai, Q., Payne, R.N., Knigge, B.E., Baumgart, P.: Will the numbers add up for sub-7-nm magnetic spacings? Future metrology issues for disk drive lubricants, overcoats, and topographies. IEEE Trans. Magn. 41(2), 626–631 (2005)

    Article  Google Scholar 

  8. Singh, G.P., Knigge, B.E., Payne, R., Wang, R.H., Mate, C.M., Arnett, P.C., Davis, C., Nayak, V., Wu, X., Schouterden, K., Baumgart, P.: A novel wear-in-pad approach to minimizing spacing at the head/disk interface. IEEE Trans. Magn. 40(4), 3148–3152 (2004)

    Article  Google Scholar 

  9. Marchon, B., Pitchford, T., Hsia, Y.-T., Gangopadhyay, S.: The head-disk interface roadmap to an areal density of Tbit/in2. Adv. Tribol. (2013). doi:10.1155/2013/521086

    Google Scholar 

  10. Juang, J.Y., Nakamura, T., Knigge, B., Luo, Y.S., Hsiao, W.C., Kuroki, K., Huang, F.Y., Baumgart, P.: Numerical and experimental analyses of nanometer-scale flying height control of magnetic head with heating element. IEEE Trans. Magn. 44(11), 3679–3682 (2008)

    Article  Google Scholar 

  11. Shiramatsu, T., Kurita, M., Miyake, K., Suk, M., Ohki, S., Tanaka, H., Saegusa, S.: Drive integration of active flying-height control slider with micro thermal actuator. IEEE Trans. Magn. 42(10), 2513–2515 (2006)

    Article  Google Scholar 

  12. Mate, C.M., Deng, H., Lo, G.-J., Boszormenyi, I., Schreck, E., Marchon, B.: Measuring and modeling flash temperatures at magnetic recording head-disk interfaces for well-defined asperity contacts. Tribol. Lett. 58(2), 27 (2015)

    Article  Google Scholar 

  13. Lee, S., Yeo, C.D., Purani, D., Kim, A.S.: Thermomechanical contact between magnetic recording head and disk defect accounting for heat partition factor. IEEE Trans. Magn. 50(3), 119–125 (2014)

    Article  Google Scholar 

  14. Yu, N., Polycarpou, A.A., Hanchi, J.V.: Thermomechanical finite element analysis of slider-disk impact in magnetic storage thin film disks. Tribol. Int. 43(4), 737–745 (2010)

    Article  Google Scholar 

  15. Liu, J., Xu, J., Li, J.: Simulation studies of contact sensor for disk defect mapping. Microsyst. Technol. 19(9–10), 1441–1448 (2013)

    Article  Google Scholar 

  16. Ye, N., Komvopoulos, K.: Three-dimensional finite element analysis of elastic–plastic layered media under thermomechanical surface loading. J. Tribol. 125(1), 52–59 (2003)

    Article  Google Scholar 

  17. Gong, Z.-Q., Komvopoulos, K.: Mechanical and thermomechanical elastic–plastic contact analysis of layered media with patterned surfaces. J. Tribol. 126(1), 9–17 (2004)

    Article  Google Scholar 

  18. Kennedy, F.: Frictional heating and contact temperatures. Mod. Tribol. Handb. 1, 235–259 (2001)

    Google Scholar 

  19. Shimizu, Y., Xu, J.G., Kohira, H., Kurita, M., Shiramatsu, T., Furukawa, M.: Nano-scale defect mapping on a magnetic disk surface using a contact sensor. IEEE Trans. Magn. 47(10), 3426–3432 (2011)

    Article  Google Scholar 

  20. Xu, J., Shimizu, Y., Furukawa, M., Li, J., Sano, Y., Shiramatsu, T., Aoki, Y., Matsumoto, H., Kuroki, K., Kohira, H.: Contact/clearance sensor for HDI subnanometer regime. IEEE Trans. Magn. 50(3), 114–118 (2014)

    Article  Google Scholar 

  21. Zhang, S., Bogy, D.B.: A heat transfer model for thermal fluctuations in a thin slider/disk air bearing. Int. J. Heat Mass Transf. 42(10), 1791–1800 (1999)

    Article  Google Scholar 

  22. ANSYS LS-DYNA User’s Guide, Release 12.1. ANSYS Inc., Canonsburg, PA (2009)

  23. Hallquist, J.O.: LS-DYNA theory manual. Livermore Software Technology Corporation, Livermore, CA (2006)

  24. Archard, J.F.: The temperature of rubbing surfaces. Wear 2(6), 438–455 (1959)

    Article  Google Scholar 

  25. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  26. Budaev, B.V., Bogy, D.B.: On the role of acoustic waves (phonons) in equilibrium heat exchange across a vacuum gap. Appl. Phys. Lett. 99(5), 053109 (2011)

    Article  Google Scholar 

  27. Stembalski, M., Preś, P., Skoczyński, W.: Determination of the friction coefficient as a function of sliding speed and normal pressure for steel C45 and steel 40HM. Arch. Civ. Mech. Eng. 13(4), 444–448 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mathew Mate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, GJ., Mate, C.M. & Dai, Q. Finite Element Simulation of the Mechanical and Thermal Behaviors of a Disk Drive Head Contacting a Disk Asperity. Tribol Lett 64, 6 (2016). https://doi.org/10.1007/s11249-016-0741-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0741-4

Keywords

Navigation