Skip to main content

Advertisement

Log in

Insigths into the Tribochemistry of Silicon-doped Carbon-Based Films by Ab Initio Analysis of Water–Surface Interactions

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

An Erratum to this article was published on 15 March 2016

Abstract

Diamond and diamond-like carbon are used as coating materials for numerous applications, ranging from biomedicine to tribology. Recently, it has been shown that the hydrophilicity of the carbon films can be enhanced by silicon doping, which highly improves their biocompatibility and frictional performances. Despite the relevance of these properties for applications, a microscopic understanding on the effects of silicon is still lacking. Here, we apply ab initio calculations to study the interaction of water molecules with Si-incorporating C(001) surfaces. We find that the presence of Si dopants considerably increases the energy gain for water chemisorption and decreases the energy barrier for water dissociation by more than 50 %. We provide a physical rational for the phenomenon by analyzing the electronic charge displacements occurring upon adsorption. We also show that once hydroxylated, the surface is able to bind further water molecules much strongly than the clean surface via hydrogen bond networks. This two-step process is consistent with and can explain the enhanced hydrophilic character observed in carbon-based films doped by silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The latter are identified by comparing the water adsorption energy at different locations. In particular, we sample six positions on a homogeneous grid along the [110] direction centered on the Si atom and covering the heterodimer and half of the sp 3 trench. The in-plane coordinates of the oxygen atom are fixed at the grid point, and all the other degrees of freedom are fully relaxed except for the slab bottom layer

References

  1. Sanchez-Lopez, J.C., Fernandez, A.: Doping and alloying effects on DLC coatings. In: Donnet, C., Erdemir, A. (eds.) Tribology of diamond-like carbon films, pp. 311–338. Springer, New York (2008)

    Chapter  Google Scholar 

  2. Bewilogua, K., Hofmann, D.: History of diamond-like carbon films—from first experiments to worldwide applications. Surf. Coat. Technol. 242, 214–225 (2014)

    Article  Google Scholar 

  3. Donnet, C.: Recent progress on the tribology of doped diamond-like and carbon alloy coatings: a review. Surf. Coat. Technol. 100–101, 180–186 (1998)

    Article  Google Scholar 

  4. Grill, A.: Diamond-like carbon: state of the art. Diam. Relat. Mater. 8, 428–434 (1999)

    Article  Google Scholar 

  5. Mori, H., Tachikawa, H.: Increased adhesion of diamond-like carbon–Si coatings and its tribological properties. Surf. Coat. Technol. 149, 224–229 (2002)

    Article  Google Scholar 

  6. Miyake, S., Kaneko, R., Kikuya, Y., Sugimoto, I.: Micro-tribological studies on fluorinated carbon films. ASME J. Tribol. Trans. 113, 384–389 (1991)

    Article  Google Scholar 

  7. Camargo Jr, S.S., Santos, R.A., Neto, A.L.B., Carius, R., Finger, F.: Structural modifcations and temperature stability of silicon incorporated diamond-like a-C: H films. Thin Solid Films 332, 130–135 (1998)

    Article  Google Scholar 

  8. Wu, W.J., Hon, M.H.: Thermal stability of diamond-like carbon films with added silicon. Surf. Coat. Technol. 111, 134–140 (1999)

    Article  Google Scholar 

  9. Varma, A., Palshin, V., Meletis, E.I.: Structure-property relationship of Si-DLC films. Surf. Coat. Technol. 148, 305–14 (2001)

    Article  Google Scholar 

  10. Hatada, R., Flege, S., Baba, K., Ensinger, W., Kleebe, H.-J., Sethmann, I., Lauterbach, S.: Temperature dependent properties of silicon containing diamondlike carbon films prepared by plasma source ion implantation. J. Appl. Phys. 107, 083307 (2010)

    Article  Google Scholar 

  11. Zhao, Q., Liu, Y., Wang, C., Wang, S.: Bacterial adhesion on silicon-doped diamond-like carbon films. Diam. Relat. Mater. 16, 1682–1687 (2007)

    Article  Google Scholar 

  12. Bendavid, A., Martin, P.J., Comte, C., Preston, E.W., Haq, A.J., MagdonIsmail, F.S., Singh, R.K.: The mechanical and biocompatibility properties of DLC-Si films prepared by pulsed DC plasma activated chemical vapor deposition. Diam. Relat. Mater. 16, 1616–1622 (2007)

    Article  Google Scholar 

  13. Oguri, K., Arai, T.: Friction coefficient of Si–C, Ti–C and Ge–C coatings with excess carbon formed by plasma-assisted chemical vapour deposition. Thin Solid Films 208, 158–160 (1992)

    Article  Google Scholar 

  14. Kim, M.G., Lee, K.R., Eun, K.Y.: Tribological behavior of silicon-incorporated diamond-like carbon films. Surf. Coat. Technol. 112, 204–209 (1999)

    Article  Google Scholar 

  15. Ikeyama, M., Nakao, S., Miyagawa, Y., Miyagawa, S.: Effects of Si content in DLC films on their friction and wear properties. Surf. Coat. Technol. 191, 38–42 (2005)

    Article  Google Scholar 

  16. Lanigan, J., Zhao, H., Morina, A., Neville, A.: Tribochemistry of silicon and oxygen doped, hydrogenated Diamond-like Carbon in fully-formulated oil against low additive oil. Tribol. Int. 82, 431–442 (2015)

    Article  Google Scholar 

  17. Wu, X., Ohana, T., Tanaka, A., Kubo, T., Nanao, H., Minami, I., Mori, S.: Tribochemical reaction of Si-DLC coating in water studied by stable isotopic tracer. Diam. Relat. Mater. 17, 147–153 (2008)

    Article  Google Scholar 

  18. Takahashi, N.: Analysis of silanol by derivatization XPS. R&D Rev. Toyota CRDL 41, 52 (2006)

    Google Scholar 

  19. Mori, H., Takahashi, N., Kazuyuki, N., Tachikawa, H., Ohmori, T.: Low friction property and its mechanism of DLC-Si films under dry sliding conditions. SAE Int. 07M–426, 16 (2007)

    Google Scholar 

  20. Kato, N., Mori, H., Takahashi, N.: Spectroscopic ellipsometry of silicon-containing diamond-like carbon (DLC-Si) films. Phys. Stat. sol. 5, 1117–1120 (2008)

    Article  Google Scholar 

  21. Washizu, H., Sand, S., Hyodo, S., Ohmori, T., Nishino, N., Suzuki, A.: Molecular dynamics simulations of elasto-hydrodynamic lubrication and boundary lubrication for automotive tribology. J. Phys.: Conf. Ser. 89, 012009 (2007)

    Google Scholar 

  22. Dearnaley, G., Arps, J.H.: Biomedical applications of diamond-like carbon (DLC) coatings: a review. Surf. Coat. Technol. 200, 2518–2524 (2005)

    Article  Google Scholar 

  23. Saitoa, T., Hasebea, T., Yohenaa, S., Matsuokaa, Y., Kamijoc, A., Takahashic, K., Suzukia, T.: Antithrombogenicity of fluorinated diamond-like carbon films. Diam. Relat. Mater. 14, 1116–1119 (2005)

    Article  Google Scholar 

  24. Borisenko, K.B., Reavy, H.J., Zhao, Q., Abel, E.W., Biomed, J.: Adhesion of protein residues to substituted (111) diamond surfaces: an insight from density functional theory and classical molecular dynamics simulations. Mater. Res. A 86, 1113–1121 (2008)

    Article  Google Scholar 

  25. Yi, J.W., Moon, M.W., Ahmed, S.F., et al.: Long-lasting hydrophilicity on nanostructured Si-incorporated diamond-like carbon films. Langmuir 26, 17203–17209 (2010)

    Article  Google Scholar 

  26. Okamoto, Y.: Initial H2O-induced oxidation of C(001)-(21): a study with hybrid density-functional theory. Phys. Rev. B 58, 6760 (1998)

    Article  Google Scholar 

  27. Manelli, O., Corni, S., Righi, M.C.: Water adsorption on native and hydrogenated diamond (001) surfaces. J. Phys. Chem. C 114, 7045–7053 (2010)

    Article  Google Scholar 

  28. Bouchet, M.-I.B., Zilibotti, G., Matta, C., Righi, M.C., Vandenbulcke, L., Vacher, B., Martin, J.-M.: Friction of diamond in the presence of water vapor and hydrogen gas. coupling gas-phase lubrication and first-principles studies. J. Phys. Chem. C 116, 69666972 (2012)

    Article  Google Scholar 

  29. Zilibotti, G., Corni, S., Righi, M.C.: Load-induced confinement activates diamond lubrication by water. Phys. Rev. Lett. 111, 146101 (2013)

    Article  Google Scholar 

  30. Grossman, J.C., Schwegler, E., Galli, G.: Quantum and classical molecular dynamics simulations of hydrophobic hydration structure around small solutes. J. Phys. Chem. B 108, 15865–15872 (2004)

    Article  Google Scholar 

  31. Iseki, T., Mori, H., Hasegawa, H., Tachikawa, H., Nakanishi, K.: Structural analysis of Si-containing diamond-like carbon. Diam. Relat. Mater. 15, 1004–1010 (2006)

    Article  Google Scholar 

  32. Palshin, V., Tittsworth, R.C., Fountzoulas, C.G., Meletis, E.I.: X-ray absorption spectroscopy, simulation and modeling of Si-DLC films. J. Mater. Sci. 37, 1535–1539 (2002)

    Article  Google Scholar 

  33. Nakanishi, N., Mori, H., Tachikawa, H., Itou, K., Fujioka, M., Funaki, Y.: Investigation of DLC-Si coatings in large-scale production using DC-PACVD equipment. Surf. Coat. Technol. 200, 4277–4281 (2006)

    Article  Google Scholar 

  34. Giannozzi, P., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  35. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  36. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892(R) (1990)

    Article  Google Scholar 

  37. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  38. Henkelman, G., Jonsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000)

    Article  Google Scholar 

  39. Henkelman, G., Uberuaga, B.P., Jonsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000)

    Article  Google Scholar 

  40. Löwdin, P.O.: On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys. 18, 365–375 (1950)

    Article  Google Scholar 

  41. Lide, D.R.: Handbook of chemistry and physics. CRC Press, Boca Raton (2002)

    Google Scholar 

  42. Zilibotti, G., Righi, M.C., Ferrario, M.: Ab initio study on the surface chemistry and nanotribological properties of passivated diamond surfaces. Phys. Rev. B 79, 075420 (2009)

    Article  Google Scholar 

  43. Kajita, S., Minato, T., Kato, H.S., Kawai, M., Nakayama, T.: First-principles calculations of hydrogen diffusion on rutile TiO2(110) surfaces. J. Chem. Phys. 127, 104709 (2007)

    Article  Google Scholar 

  44. Sprik, M.: Ab initio molecular dynamics simulation of liquids and solutions. J. Phys.: Condens. Matter 8, 9405–9409 (1996)

    Google Scholar 

  45. Johnson, E.R., DiLabio, G.A.: Structure and binding energies in van der Waals dimers: comparison between density functional theory and correlated ab initio methods. Chem. Phys. Lett. 419, 333–339 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the CINECA consortium for the availability of high-performance computing resources and support through the ISCRA-B TRIBOGMD project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Righi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajita, S., Righi, M.C. Insigths into the Tribochemistry of Silicon-doped Carbon-Based Films by Ab Initio Analysis of Water–Surface Interactions. Tribol Lett 61, 17 (2016). https://doi.org/10.1007/s11249-015-0631-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0631-1

Keywords

Navigation