Skip to main content
Log in

Critical analysis of a coaxial configuration for the characterization of adhesive wear and its application to Al and Al–Sn alloys

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

One of the main challenges of a tribological design is to find suitable pairs of materials to minimize friction and wear under specific operating conditions. To reproduce conditions of sliding and adhesive wear, a coaxial tribometer was developed. The equipment uses real-time data acquisition and feedback, allowing continuous control over a wide range of loads and rotational speed. Finite element analysis and experiments on selected materials are used to present a critical assessment of the advantages and drawbacks of the proposed configuration. Specifically, the tribological behaviour of cold-rolled and recrystallized AA1100 Al alloy and Al–Sn alloys is revisited. Worn surfaces are characterized by optical roughness measurement and SEM observation. Optical profilometry shows higher values of roughness in cold-rolled materials and confirms the essential contribution of Sn to the reduction of adhesive wear in Al-based alloys. At the surface of the SAE 783 alloy, severe mechanical mixing of the Al and Sn phases was observed in the worn zones as the result of severe plastic deformation during the formation of the tribologically modified surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kato, K.: Wear mechanisms. In: 1st World Tribology Congress—New Directions in Tribology, London 1997, pp. 39–56

  2. Bhushan, B.: Modern tribology handbook. Mechanics and materials science series. CRC Press, Boca Raton (2001)

    Google Scholar 

  3. Bhushan, B.: Principles and applications of tribology. Wiley, New York (1999)

    Google Scholar 

  4. Wen, S., Huang, P.: Principles of tribology. Wiley, Hoboken (2012)

    Google Scholar 

  5. Bayer, R.G.: Mechanical wear prediction and prevention. Mechanical engineering, vol. 91. M. Dekker, New York (1994)

  6. Williams, J.A.: Engineering tribology. Cambridge University Press, New York (2005)

    Book  Google Scholar 

  7. Rabinowicz, E.: Friction and wear of materials, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  8. Gane, N., Pfaelzer, P.F., Tabor, D.: Adhesion between clean surfaces at light loads. Proc. R. Soc. Lond. A Math. 340(1623), 495–517 (1974). doi:10.1098/rspa.1974.0167

    Article  Google Scholar 

  9. Johnson, K.L.: Mechanics of adhesion. Tribol. Int. 31(8), 413–418 (1998). doi:10.1016/S0301-679X(98)00060-7

    Article  Google Scholar 

  10. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface Energy and the Contact of Elastic Solids. Proc. R. Soc. Lond. A Math. 324(1558), 301–313 (1971). doi:10.1098/rspa.1971.0141

    Article  Google Scholar 

  11. Rabinowicz, E.: The determination of the compatibility of metals through static friction tests. ASLE Trans. 14(3), 198–205 (1971). doi:10.1080/05698197108983243

    Article  Google Scholar 

  12. Rigney, D.A.: Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials. Wear 245(1–2), 1–9 (2000). doi:10.1016/S0043-1648(00)00460-9

    Article  Google Scholar 

  13. Rigney, D.A., Naylor, M.G.S., Divakar, R., Ives, L.K.: Low energy dislocation structures caused by sliding and by particle impact. Mater. Sci. Eng. 81, 409–425 (1986). doi:10.1016/0025-5416(86)90279-X

    Article  Google Scholar 

  14. Rigney, D.A., Chen, L.H., Naylor, M.G.S., Rosenfield, A.R.: Wear processes in sliding systems. Wear 100(1–3), 195–219 (1984). doi:10.1016/0043-1648(84)90013-9

    Article  Google Scholar 

  15. Kapoor, A., Franklin, F.J.: Tribological layers and the wear of ductile materials. Wear 245(1–2), 204–215 (2000). doi:10.1016/S0043-1648(00)00480-4

    Article  Google Scholar 

  16. Kapoor, A., Franklin, F.J., Wong, S.K., Ishida, M.: Surface roughness and plastic flow in rail wheel contact. Wear 253(1–2), 257–264 (2002). doi:10.1016/S0043-1648(02)00111-4

    Article  Google Scholar 

  17. Valiev, R.Z., Islamgaliev, R.K., Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45(2), 103–189 (2000)

    Article  Google Scholar 

  18. Moshkovich, A., Perfilyev, V., Bendikov, T., Lapsker, I., Cohen, H., Rapoport, L.: Structural evolution in copper layers during sliding under different lubricant conditions. Acta Mater. 58(14), 4685–4692 (2010). doi:10.1016/j.actamat.2010.05.001

    Article  Google Scholar 

  19. Meshi, L., Samuha, S., Cohen, S.R., Laikhtman, A., Moshkovich, A., Perfilyev, V., Lapsker, I., Rapoport, L.: Dislocation structure and hardness of surface layers under friction of copper in different lubricant conditions. Acta Mater. 59(1), 342–348 (2011). doi:10.1016/j.actamat.2010.09.038

    Article  Google Scholar 

  20. Tarasov, S., Rubtsov, V., Kolubaev, A.: Subsurface shear instability and nanostructuring of metals in sliding. Wear 268(1–2), 59–66 (2010). doi:10.1016/j.wear.2009.06.027

    Article  Google Scholar 

  21. Tarasov, S.Y., Rubtsov, V.E.: Shear instability in the subsurface layer of a material in friction. Phys. Solid State 53(2), 358–362 (2011). doi:10.1134/s1063783411020302

    Article  Google Scholar 

  22. Schouwenaars, R., Jacobo, V.H., Ortiz, A.: Microstructural aspects of wear in soft tribological alloys. Wear 263, 727–735 (2007). doi:10.1016/j.wear.2006.12.037

    Article  Google Scholar 

  23. Figueroa, C.G., Ortega, I., Jacobo, V.H., Ortiz, A., Bravo, A.E., Schouwenaars, R.: Microstructures of tribologically modified surface layers in two-phase alloys. IOP Conf. Ser. Mater. Sci. Eng. 63(1), 012018 (2014)

    Article  Google Scholar 

  24. Lu, Z.C., Gao, Y., Zeng, M.Q., Zhu, M.: Improving wear performance of dual-scale Al–Sn alloys: the role of Mg addition in enhancing Sn distribution and tribolayer stability. Wear 309(1–2), 216–225 (2014). doi:10.1016/j.wear.2013.11.018

    Article  Google Scholar 

  25. Rainforth, W.M.: Microstructural evolution at the worn surface: a comparison of metals and ceramics. Wear 245(1–2), 162–177 (2000). doi:10.1016/S0043-1648(00)00476-2

    Article  Google Scholar 

  26. Zeng, P., Rainforth, W.M., Inkson, B.J., Stewart, T.D.: Transmission electron microscopy analysis of worn alumina hip replacement prostheses. Acta Mater. 60(5), 2061–2072 (2012). doi:10.1016/j.actamat.2012.01.009

    Article  Google Scholar 

  27. Zein Eddine, W., Matteazzi, P., Celis, J.-P.: Mechanical and tribological behavior of nanostructured copper–alumina cermets obtained by Pulsed Electric Current Sintering. Wear 297(1–2), 762–773 (2013). doi:10.1016/j.wear.2012.10.011

    Article  Google Scholar 

  28. Stolyarov, V.V., Shuster, L.S., Migranov, M.S., Valiev, R.Z., Zhu, Y.T.: Reduction of friction coefficient of ultrafine-grained CP titanium. Mater. Sci. Eng. A 371(1–2), 313–317 (2004). doi:10.1016/j.msea.2003.12.026

    Article  Google Scholar 

  29. Hegadekatte, V., Kurzenhäuser, S., Huber, N., Kraft, O.: A predictive modeling scheme for wear in tribometers. Tribol. Int. 41(11), 1020–1031 (2008)

    Article  Google Scholar 

  30. Fox-Rabinovich, G.S., Kovalev, A.I., Shuster, L.S., Bokiy, Y.F., Dosbayeva, G.K., Wainstein, D.L., Mishina, V.P.: Characteristic features of alloying HSS-based deformed compound powder materials with consideration for tool self-organization at cutting: 1. Characteristic features of wear in HSS-based deformed compound powder materials at cutting. Wear 206(1–2), 214–220 (1997). doi:10.1016/S0043-1648(96)07516-3

    Article  Google Scholar 

  31. Schouwenaars, R., Duran, H.A., Jacobo, V.H., Ortiz, A.: Microstructure, Texture and Recrystallisation Mechanisms of an Al–20%Sn Deformation Processed Metal-Metal Composite. Mater. Sci. Forum 715716, 522–527 (2007)

    Google Scholar 

  32. Schouwenaars, R., Torres, J.A., Jacobo, V.H., Ortiz, A.: Tailoring the mechanical properties of Al–Sn-Alloys for tribological applications. Mater. Sci. Forum 539–543, 317–322 (2006)

    Google Scholar 

  33. Ramirez, M.A., Figueroa, C.G., Jacobo, V.H., Ortiz, A., Schouwenaars, R.: Mesh optimization for the reverse modelling of the Vickers test and its application to a tribologically modified surface layer. Paper presented at the 3rd International Conference on Engineering Optimization, Rio de Janeiro, Brazil

  34. Pratt, G.C.: Materials for plain bearings. Int. Metall. Rev. 18(2), 62–88 (1973). doi:10.1179/imtlr.1973.18.2.62

    Article  Google Scholar 

  35. Kingsbury, G.R.: Friction and wear of sliding bearing materials. In: Blau, P.J. (ed.) ASM Handbook vol. 18. pp. 741–757. ASM International, Materials Park, Novelty, Ohio (1992)

    Google Scholar 

  36. Ma, E.: Alloys created between immiscible elements. Prog. Mater Sci. 50(4), 413–509 (2005). doi:10.1016/j.pmatsci.2004.07.001

    Article  Google Scholar 

  37. Rauchs, G., Bardon, J.: Identification of elasto-viscoplastic material parameters by indentation testing and combined finite element modelling and numerical optimization. Finite Elem. Anal. Des. 47(7), 653–667 (2011). doi:10.1016/j.finel.2011.01.008

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank J.G. Lara for his invaluable support in the design and construction of the coaxial tribometer. Technical support by G. Álvarez, R. Cisneros, J. Romero, E. Ramos and I. Cueva is greatly acknowledged. This work was financially supported by CONACYT under grant CONACYT-SEP 168041 and by DGAPA trough projects PAPIME PE103312 and PAPIIT IN114215. C G Figueroa wishes to thank CONACYT for his PhD scholarship and support for a stay at Ghent University. R. Schouwenaars acknowledges support by DGAPA under the PASPA programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schouwenaars.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueroa, C.G., Jacobo, V.H., Ortiz, A. et al. Critical analysis of a coaxial configuration for the characterization of adhesive wear and its application to Al and Al–Sn alloys. Tribol Lett 59, 14 (2015). https://doi.org/10.1007/s11249-015-0548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0548-8

Keywords

Navigation