Skip to main content
Log in

Impact of Ethylene Oxide Butylene Oxide Copolymers on the Composition and Friction of Silicone Hydrogel Surfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The surface chemical compositions of three types of silicone hydrogel contact lenses, PureVision® (balafilcon A), ACUVUE® OASYS® (senofilcon A), and O2OPTIX® (lotrafilcon B), were analyzed using X-ray photoelectron spectroscopy prior to and following treatment in a test solution of diblock copolymer of poly(ethylene oxide) and poly(butylene oxide) (EO–BO). Prior to treatment, differences in surface elemental compositions of the lenses were found to reflect known bulk compositions and/or respective surface treatments. Following solution treatment, surface chemical modifications were apparent in balafilcon A and lotrafilcon B, especially in the distribution of chemical functionalities present at the surface. Only modest changes in surface composition were observed for the senofilcon A material. Atomic force microscopy (AFM) was employed to evaluate the surface topography and frictional properties of the lenses prior to and following similar solution treatments. AFM measurements in saline revealed large disparities between the coefficients of friction of the three lenses, with balafilcon A and lotrafilcon B exhibiting coefficients of friction approximately five times greater than that of senofilcon A. Lens surface treatment with the diblock copolymer test solution produced a significant reduction in the coefficients of friction of the two lenses exhibiting higher friction, yet only a small reduction in friction was observed for senofilcon A lens. Together, these results depict a strong correlation between the surface chemistry and frictional response of the lens systems as they relate to solution treatment with this specific diblock copolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guryca, V., Hobzová, R., Prádný, M., Sirc, J., Michálek, J.: Surface morphology of contact lenses probed with microscopy techniques. Contact Lens Anterior Eye 30, 215–222 (2007)

    Article  Google Scholar 

  2. González-Méijome, J.M., López-Alemany, A., Almeida, J.B., Parafita, M.A., Refojo, M.F.: Microscopic observations of superficial ultrastructure of unworn siloxane-hydrogel contact lenses by cryo-scanning electron microscopy. J. Biomed. Mater. Res. B 76B, 419–423 (2006)

    Article  Google Scholar 

  3. López-Alemany, A., Compañ, V., Refojo, M.F.: Porous structure of PureVision (TM) versus Focus® Night&Day (TM) and conventional hydrogel contact lenses. J. Biomed. Mater. Res. 63, 319–325 (2002)

    Article  Google Scholar 

  4. Subbaraman, L.N., Glasier, M., Senchyna, M., Sheardown, H., Jones, L.: Kinetics of in vitro lysozyme deposition on silicone hydrogel, PMMA, and FDA Groups I, II, and IV contact lens materials. Curr. Eye Res. 31, 787–796 (2006)

    Article  CAS  Google Scholar 

  5. Fonn, D.: Targeting contact lens induced dryness and discomfort: what properties will make lenses more comfortable. Optom. Vis. Sci. 84, 279–285 (2007)

    Article  Google Scholar 

  6. Santos, L., Rodrigues, D., Lira, M., Oliveira, M.E., Oliveira, R., Vilar, E.Y., Azeredo, J.: The influence of surface treatment on hydrophobicity, protein adsorption and microbial colonisation of silicone hydrogel contact lenses. Contact Lens Anterior Eye 30, 183–188 (2007)

    Article  Google Scholar 

  7. Nicolson, P.C.: Continuous wear contact lens surface chemistry and wearability. Eye Contact Lens 29, S30–S32 (2003)

    Article  Google Scholar 

  8. Daniels, K.: Contact lens-induced dry eye. In: Agarwal, A. (ed.) Dry Eye: A Practical Guide to Ocular Surface Disorders and Stem Cell Surgery, p. 324. Slack Incorporated, Thorofare, NJ (2006)

    Google Scholar 

  9. Weikart, C.M., Matsuzawa, Y., Winterton, L., Yasuda, H.K.: Evaluation of plasma polymer-coated contact lenses by electrochemical impedance spectroscopy. J. Biomed. Mater. Res. 54, 597–607 (2001)

    Article  CAS  Google Scholar 

  10. Teichroeb, J.H., Forrest, J.A., Ngai, W., Martin, J.W., Jones, L., Medley, J.: Imaging protein deposits on contact lens materials. Optom. Vis. Sci. 85, 1151–1164 (2008)

    Article  Google Scholar 

  11. Cheng, L., Muller, S.J., Radke, C.J.: Wettability of silicone-hydrogel contact lenses in the presence of tear-film components. Curr. Eye Res. 28, 93–108 (2004)

    Article  Google Scholar 

  12. Svitoa, T.F., Lin, M.C.: Tear lipids interfacial rheology: effect of lysozyme and lens care solutions. Optom. Vis. Sci. 87, 10–20 (2010)

    Article  Google Scholar 

  13. Ketelson, H.A., Meadows, D.L., Stone, R.P.: Dynamic wettability properties of a soft contact lens hydrogel. Colloid Surf. B 40, 1–9 (2005)

    Article  CAS  Google Scholar 

  14. Karlgard, C.C.S., Sarkar, D.K., Jones, L.W., Moresoli, C., Leung, K.T.: Drying methods for XPS analysis of PureVision(TM), Focus® Night&Day(TM) and conventional hydrogel contact lenses. Appl. Surf. Sci. 230, 106–114 (2004)

    Article  CAS  Google Scholar 

  15. McArthur, S.L., McLean, K.M., St. John, H.A.W., Griesser, H.J.: XPS and surface-MALDI-MS characterisation of worn HEMA-based contact lenses. Biomaterials 22, 3295–3304 (2001)

    Article  CAS  Google Scholar 

  16. Maldonado-Codina, C., Morgan, P.B., Efron, N., Canry, J.: Characterization of the surface of conventional hydrogel and silicone hydrogel contact lens by time-of-flight secondary ion mass spectrometry. Optom. Vis. Sci. 81, 455–460 (2004)

    Article  Google Scholar 

  17. Opdahl, A., Koffas, T.S., Amitay-Sadovsky, E., Kim, J., Somorjai, G.A.: Characterization of polymer surface structure and surface mechanical behaviour by sum frequency generation surface vibrational spectroscopy and atomic force microscopy. J. Phys.: Condens. Matter 16, R659–R677 (2004)

    Article  CAS  Google Scholar 

  18. Kim, S.H., Opdahl, A., Marmo, C., Somorjai, G.A.: AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface. Biomaterials 23, 1657–1666 (2002)

    Article  CAS  Google Scholar 

  19. González-Méijome, J.M., López-Alemany, A., Almeida, J.B., Parafita, M.A., Refojo, M.F.: Microscopic observation of unworn siloxane-hydrogel soft contact lenses by atomic force microscopy. J. Biomed. Mater. Res. B 76B, 412–418 (2006)

    Article  Google Scholar 

  20. Rennie, A.C., Dickrell, P.L., Sawyer, W.G.: Friction coefficient of soft contact lenses: measurements and modeling. Tribol. Lett. 18, 499–504 (2005)

    Article  CAS  Google Scholar 

  21. Kim, S.H., Marmo, C., Somorjai, G.A.: Friction studies of hydrogel contact lenses using AFM: non-crosslinked polymers of low friction at the surface. Biomaterials 22, 3285–3294 (2001)

    Article  CAS  Google Scholar 

  22. Maldonado-Codina, C., Morgan, P.B.: In vitro water wettability of silicone hydrogel contact lenses determined using the sessile drop and captive bubble techniques. J. Biomed. Mater. Res. A 83A, 496–502 (2007)

    Article  CAS  Google Scholar 

  23. Menzies, K.L., Jones, L.: In vitro analysis of the physical properties of contact lens blister pack solutions. Optom. Vis. Sci. 88, 493–501 (2011)

    Article  Google Scholar 

  24. Nace, V.M.: Contrasts in the surface activity of polyoxypropylene and polyoxybutylene-based block copolymer surfactants. J. Am. Oil Chem. Soc. 73, 1–8 (1996)

    Article  CAS  Google Scholar 

  25. Larson, P.E., Kelly, M.A.: Surface charge neutralization of insulating samples in X-ray photoemission spectroscopy. J. Vac. Sci. Technol. A 16, 3483–3489 (1998)

    Article  CAS  Google Scholar 

  26. Repoux, M.: Comparison of background removal methods for XPS. Surf. Interface Anal. 18, 567–570 (2004)

    Article  Google Scholar 

  27. Vegh, J.: The analytical form of the Shirley-type background. J. Electron Spectrosc. 46, 411–417 (1998)

    Article  Google Scholar 

  28. Tougaard, S., Jansson, C.: Comparison of validity and consistency of methods for quantitative XPS peak analysis. Surf. Interface Anal 20, 1013–1046 (1993)

    Article  CAS  Google Scholar 

  29. Perry, S.S.: Scanning probe microscopy measurements of friction. MRS Bull. 29, 478–483 (2004)

    Article  CAS  Google Scholar 

  30. Limpoco, F.T., Payne, J.M., Perry, S.S.: Experimental considerations when characterizing materials friction with atomic force microscopy. Tribol. Lett. 35, 3–7 (2009)

    Article  Google Scholar 

  31. Bain, C.D., Whitesides, G.M.: Attenuation lengths of photoelectrons in hydrocarbon films. J. Phys. Chem. 93, 1670–1673 (1989)

    Article  CAS  Google Scholar 

  32. Seah, M.P., Dench, W.A.: Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2–11 (1979)

    Article  CAS  Google Scholar 

  33. Lorentz, H., Rogers, R., Jones, L.: The impact of lipid on contact angle wettability. Optom. Vis. Sci. 84, 946–953 (2007)

    Article  Google Scholar 

  34. Muller, M.T., Yan, X.P., Lee, S.W., Perry, S.S., Spencer, N.D.: Preferential solvation and its effect on the lubrication properties of a surface-bound, brushlike copolymer. Macromolecules 38, 3861–3866 (2005)

    Article  Google Scholar 

  35. Muller, M.T., Yan, X.P., Lee, S.W., Perry, S.S., Spencer, N.D.: Lubrication properties of a brushlike copolymer as a function of the amount of solvent absorbed within the brush. Macromolecules 38, 5706–5713 (2005)

    Article  Google Scholar 

  36. Perry, S.S., Yan, X.P., Limpoco, F.T., Lee, S.W., Muller, M.T., Spencer, N.D.: Tribological properties of poly(l-lysine)-graft-poly(ethylene glycol) films: Influence of polymer architecture and adsorbed conformation. ACS Appl. Mater. Interfaces 1, 1224–1230 (2009)

    Article  CAS  Google Scholar 

  37. Brady, M.A., Limpoco, F.T., Perry, S.S.: Solvent-dependent friction force response of poly(ethylenimine)-graft-poly(ethylene glycol) brushes investigated by atomic force microscopy. Langmuir 25, 7443–7449 (2009)

    Article  CAS  Google Scholar 

  38. Raviv, U., Frey, J., Sak, R., Laurat, P., Tadmor, R., Klein, J.: Properties and interactions of physigrafted end-functionalized poly(ethylene glycol) layers. Langmuir 18, 7482–7495 (2002)

    Article  CAS  Google Scholar 

  39. Drobek, T., Spencer, N.D.: Nanotribology of surface-grafted PEG layers in an aqueous environment. Langmuir 24, 1484–1488 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This project was funded by a research grant from Alcon Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott S. Perry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, Y., Rudy, A., Wang, A. et al. Impact of Ethylene Oxide Butylene Oxide Copolymers on the Composition and Friction of Silicone Hydrogel Surfaces. Tribol Lett 45, 505–513 (2012). https://doi.org/10.1007/s11249-011-9902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9902-7

Keywords

Navigation