Skip to main content
Log in

Generation of mice encoding a conditional null allele of Gcm2

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Glial cells missing homolog 2 (GCM2) is a transcription factor that is expressed predominately in the pharyngeal pouches and, at later stages, in the developing and mature parathyroid glands. In humans, loss of GCM2 function, either through recessive apomorphic mutations or dominant inhibitor mutations in the human GCM2 gene, leads to isolated hypoparathyroidism. In mice, homozygous disruption of Gcm2 by conventional gene targeting results in parathyroid aplasia and hypoparathyroidism. In this study, we report the generation and functional characterization of mice encoding a conditional null allele of Gcm2. We demonstrate the functional integrity of the conditional Gcm2 allele and report successful in vivo deletion of exon 2 using Cre recombinase. The mice with conditional deletion of Gcm2 displayed phenotypes similar to those previously described for a conventional Gcm2 knockout, including perinatal lethality, hypocalemia, low or undetectable serum levels of parathyroid hormone, and absent parathyroid glands. The production of a conditional mutant allele for Gcm2 represents a valuable resource for the study of the temporal- and spatial-specific roles for Gcm2, and for understanding the postnatal activities of GCM2 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akiyama Y, Hosoya T, Poole AM, Hotta Y (1996) The gcm-motif: a novel DNA-binding motif conserved in Drosophila and mammals. Proc Natl Acad Sci USA 93(25):14912–14916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Altshuller Y, Copeland NG, Gilbert DJ, Jenkins NA, Frohman MA (1996) Gcm1, a mammalian homolog of Drosophila glial cells missing. FEBS Lett 393(2–3):201–204

    Article  CAS  PubMed  Google Scholar 

  • Baumber L, Tufarelli C, Patel S, King P, Johnson CA, Maher ER, Trembath RC (2005) Identification of a novel mutation disrupting the DNA binding activity of GCM2 in autosomal recessive familial isolated hypoparathyroidism. J Med Genet 42(5):443–448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Canaff L, Zhou X, Mosesova I, Cole DE, Hendy GN (2009) Glial cells missing-2 (GCM2) transactivates the calcium-sensing receptor gene: effect of a dominant-negative GCM2 mutant associated with autosomal dominant hypoparathyroidism. Hum Mutat 30(1):85–92. doi:10.1002/humu.20827

    Article  CAS  PubMed  Google Scholar 

  • Chotard C, Leung W, Salecker I (2005) Glial cells missing and gcm2 cell autonomously regulate both glial and neuronal development in the visual system of Drosophila. Neuron 48(2):237–251

    Article  CAS  PubMed  Google Scholar 

  • Cohen SX, Moulin M, Schilling O, Meyer-Klaucke W, Schreiber J, Wegner M, Muller CW (2002) The GCM domain is a Zn-coordinating DNA-binding domain. FEBS Lett 528(1–3):95–100

    Article  CAS  PubMed  Google Scholar 

  • Cohen SX, Moulin M, Hashemolhosseini S, Kilian K, Wegner M, Muller CW (2003) Structure of the GCM domain–DNA complex: a DNA-binding domain with a novel fold and mode of target site recognition. EMBO J 22(8):1835–1845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collins MT, Lindsay JR, Jain A, Kelly MH, Cutler CM, Weinstein LS, Liu J, Fedarko NS, Winer KK (2005) Fibroblast growth factor-23 is regulated by 1alpha,25-dihydroxyvitamin D. J Bone Miner Res 20(11):1944–1950

    Article  CAS  PubMed  Google Scholar 

  • Ding C, Buckingham B, Levine MA (2001) Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor GCMB. J Clin Invest 108(8):1215–1220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doyle D, Kirwin SM, Sol-Church K, Levine MA (2012) A novel mutation in the GCM2 gene causing severe congenital isolated hypoparathyroidism. J Pediatr Endocrinol Metab 25(7–8):741–746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fraser RA, Kronenberg HM, Pang PK, Harvey S (1990) Parathyroid hormone messenger ribonucleic acid in the rat hypothalamus. Endocrinology 127(5):2517–2522

    Article  CAS  PubMed  Google Scholar 

  • Germain-Lee EL, Schwindinger W, Crane JL, Zewdu R, Zweifel LS, Wand G, Huso DL, Saji M, Ringel MD, Levine MA (2005) A mouse model of Albright hereditary osteodystrophy generated by targeted disruption of exon 1 of the Gnas gene. Endocrinology 146(11):4697–4709

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Bennett AR, Blackburn CC, Manley NR (2001) Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech Dev 103(1–2):141–143

    Article  CAS  PubMed  Google Scholar 

  • Grigorieva IV, Mirczuk S, Gaynor KU, Nesbit MA, Grigorieva EF, Wei Q, Ali A, Fairclough RJ, Stacey JM, Stechman MJ, Mihai R, Kurek D, Fraser WD, Hough T, Condie BG, Manley N, Grosveld F, Thakker RV (2010) Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2. J Clin Invest 120(6):2144–2155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gunther T, Chen ZF, Kim J, Priemel M, Rueger JM, Amling M, Moseley JM, Martin TJ, Anderson DJ, Karsenty G (2000) Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 406(6792):199–203

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Winer K, Econs MJ, Marx SJ, Collins MT (2004) FGF-23 is elevated by chronic hyperphosphatemia. J Clin Endocrinol Metab 89(9):4489–4492

    Article  CAS  PubMed  Google Scholar 

  • Hashemolhosseini S, Wegner M (2004) Impacts of a new transcription factor family: mammalian GCM proteins in health and disease. J Cell Biol 166(6):765–768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hitoshi S, Ishino Y, Kumar A, Jasmine S, Tanaka KF, Kondo T, Kato S, Hosoya T, Hotta Y, Ikenaka K (2011) Mammalian Gcm genes induce Hes5 expression by active DNA demethylation and induce neural stem cells. Nat Neurosci 14(8):957–964

    Article  CAS  PubMed  Google Scholar 

  • Hosoya T, Takizawa K, Nitta K, Hotta Y (1995) Glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 82(6):1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Jones BW, Fetter RD, Tear G, Goodman CS (1995) Glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 82(6):1013–1023

    Article  CAS  PubMed  Google Scholar 

  • Kamitani-Kawamoto A, Hamada M, Moriguchi T, Miyai M, Saji F, Hatamura I, Nishikawa K, Takayanagi H, Hitoshi S, Ikenaka K, Hosoya T, Hotta Y, Takahashi S, Kataoka K (2011) MafB interacts with Gcm2 and regulates parathyroid hormone expression and parathyroid development. J Bone Miner Res 26(10):2463–2472

    Article  CAS  PubMed  Google Scholar 

  • Kammerer M, Pirola B, Giglio S, Giangrande A (1999) GCMB, a second human homolog of the fly glide/gcm gene. Cytogenet Cell Genet 84(1–2):43–47

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Jones BW, Zock C, Chen Z, Wang H, Goodman CS, Anderson DJ (1998) Isolation and characterization of mammalian homologs of the drosophila gene glial cells missing. Proc Natl Acad Sci USA 95:12364–12369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Yu S, Manley NR (2007) Gcm2 is required for the differentiation and survival of parathyroid precursor cells in the parathyroid/thymus primordia. Dev Biol 305(1):333–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Farley A, Chen L, Kirby BJ, Kovacs CS, Blackburn CC, Manley NR (2010) Thymus-associated parathyroid hormone has two cellular origins with distinct endocrine and immunological functions. PLoS Genet 6(12):e1001251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mannstadt M, Bertrand G, Muresan M, Weryha G, Leheup B, Pulusani SR, Grandchamp B, Juppner H, Silve C (2008) Dominant-negative GCMB mutations cause an autosomal dominant form of hypoparathyroidism. J Clin Endocrinol Metab 93(9):3568–3576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maret A, Bourdeau I, Ding C, Kadkol SS, Westra WH, Levine MA (2004) Expression of GCMB by intrathymic parathyroid hormone-secreting adenomas indicates their parathyroid cell origin. J Clin Endocrinol Metab 89(1):8–12

    Article  CAS  PubMed  Google Scholar 

  • Maret A, Ding C, Kornfield SL, Levine MA (2008) Analysis of the GCM2 gene in isolated hypoparathyroidism: a molecular and biochemical study. J Clin Endocrinol Metab 93(4):1426–1432

    Article  CAS  PubMed  Google Scholar 

  • Mirczuk SM, Bowl MR, Nesbit MA, Cranston T, Fratter C, Allgrove J, Brain C, Thakker RV (2010) A missense glial cells missing homolog B (GCMB) mutation, Asn502His, causes autosomal dominant hypoparathyroidism. J Clin Endocrinol Metab 95(7):3512–3516

    Article  CAS  PubMed  Google Scholar 

  • Nutley MT, Parimi SA, Harvey S (1995) Sequence analysis of hypothalamic parathyroid hormone messenger ribonucleic acid. Endocrinology 136(12):5600–5607

    CAS  PubMed  Google Scholar 

  • O’Gorman S, Wahl GM (1997) Mouse engineering. Science 277(5329):1025

    PubMed  Google Scholar 

  • O’Gorman S, Dagenais NA, Qian M, Marchuk Y (1997) Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc Natl Acad Sci USA 94(26):14602–14607

    Article  PubMed Central  PubMed  Google Scholar 

  • Okabe M, Graham A (2004) The origin of the parathyroid gland. Proc Natl Acad Sci USA 101(51):17716–17719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quinn SJ, Thomsen AR, Pang JL, Kantham L, Brauner-Osborne H, Pollak M, Goltzman D, Brown EM (2013) Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. Am J Physiol Endocrinol Metab 304(3):E310–E320

    Google Scholar 

  • Schreiber J, Enderich J, Wegner M (1998) Structural requirements for DNA binding of GCM proteins. Nucleic Acids Res 26(10):2337–2343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silver J, Naveh-Many T (2012) FGF23 and the parathyroid. Adv Exp Med Biol 728:92–99

    Article  CAS  PubMed  Google Scholar 

  • Simmonds CS, Karsenty G, Karaplis AC, Kovacs CS (2010) Parathyroid hormone regulates fetal-placental mineral homeostasis. J Bone Miner Res 25(3):594–605

    Article  CAS  PubMed  Google Scholar 

  • Sticht H, Hashemolhosseini S (2006) A common structural mechanism underlying GCMB mutations that cause hypoparathyroidism. Med Hypotheses 67(3):482–487

    Article  CAS  PubMed  Google Scholar 

  • Thomee C, Schubert SW, Parma J, Le PQ, Hashemolhosseini S, Wegner M, Abramowicz MJ (2005) GCMB mutation in familial isolated hypoparathyroidism with residual secretion of parathyroid hormone. J Clin Endocrinol Metab 90(5):2487–2492

    Article  CAS  PubMed  Google Scholar 

  • Wegner M, Riethmacher D (2001) Chronicles of a switch hunt: gcm genes in development. Trends Genet 17(5):286–290

    Article  CAS  PubMed  Google Scholar 

  • Yamashita H, Yamazaki Y, Hasegawa H, Yamashita T, Fukumoto S, Shigematsu T, Kazama JJ, Fukagawa M, Noguchi S (2007) Fibroblast growth factor-23 (FGF23) in patients with transient hypoparathyroidism: its important role in serum phosphate regulation. Endocr J 54(3):465–470

    Article  CAS  PubMed  Google Scholar 

  • Yuan Q, Jiang Y, Zhao X, Sato T, Densmore M, Schuler C, Erben RG, McKee MD, Lanske B (2013) Increased osteopontin contributes to inhibition of bone mineralization in FGF23-deficient mice. J Bone Miner Res. 29(3):693–704

    Google Scholar 

  • Zajac JD, Danks JA (2008) The development of the parathyroid gland: from fish to human. Curr Opin Nephrol Hypertens 17(4):353–356

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by NIDDK R01DK079970 (M.A.L.), the Cleveland Clinic Lerner Research Institute, the CHOP Research Institute, the Albert Einstein College of Medicine and a generous gift from Linda and Earle Altman (S.K.L.). We acknowledge the generous help and guidance of Dr. Alexander Gorodinsky, Taconic Laboratory.

Conflict of interest

All authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Levine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Opas, E.E., Vrikshajanani, C. et al. Generation of mice encoding a conditional null allele of Gcm2 . Transgenic Res 23, 631–641 (2014). https://doi.org/10.1007/s11248-014-9799-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-014-9799-7

Keywords

Navigation