Skip to main content
Log in

Diesel Oxidation Catalyst Pt–Pd/MnOx–Al2O3 for Soot Emission Control: Effect of NO and Water Vapor on Soot Oxidation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The operation of diesel engines is accompanied by the emission of soot particles and nitrogen oxides, which have a harmful effect on the environment. In this paper, the effect of the composition of a gas feeds simulating the diesel engine exhaust gases on the oxidation of diesel soot particles on the surface of a diesel oxidizing catalyst Pt–Pd/MnOx–Al2O3 with a total Pt–Pd content of 15 g/f3 is considered. The rate and effective activation energy of catalytic oxidation of diesel soot with oxygen and NOx were studied in the isothermal mode with varying concentrations of O2 in the presence of NO and/or water vapor. It was revealed that the rate of catalytic oxidation of soot depends on the concentration of O2 (2.5–10 vol.%) and NO (300–450 ppm), but this effect is significant at soot conversion below 45–50%. It was found that the decrease in the rate of soot oxidation slows down after reaching 25–30% of soot burnout, probably due to the accumulation of O-containing groups on the surface of graphite-like soot structures and an increase in soot defectiveness. Water vapor (10 vol.%) alone did not catalyze the oxidation of soot up to temperatures of 475 °C. In the presence of oxygen, the soot oxidation with a wet feed proceeded more easily than with a dry mixture at temperatures of 400 and 425 °C; the promoting effect of water weakened at higher temperatures, and at a temperature of 475 °C had a negative character. In a wet mixture containing O2 and NO, the soot oxidation was inhibited by water vapor at temperatures of 375–450 °C. The reason was low generation of NO2 over catalyst Pt–Pd/MnOx–Al2O3 under wet conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dziubak T, Karczewski M (2022) Experimental studies of the Effect of Air Filter pressure Drop on the Composition and Emission changes of a Compression Ignition Internal Combustion Engine. Energies 15:4815. https://doi.org/10.3390/en15134815

    Article  CAS  Google Scholar 

  2. Khair MK, Majewski WA (2006) Diesel emissions and their control. SAE Inernational, Pennsylvania (978-0-7680-0674-2)

    Book  Google Scholar 

  3. Lox ES, Engler BH, Koberstein E (1991) Diesel emission control. Stud Sur Sci Catal 71:291–321

    Article  CAS  Google Scholar 

  4. Resitoglu A, Altinisik K, Keskin A (2015) The pollutant emissions from diesel-engine vehicles and exhaust after treatment systems. Clean Techn Environ Policy 17:15–27. https://doi.org/10.1007/s10098-014-0793-9

    Article  CAS  Google Scholar 

  5. Gallus J, Kirchner U, Vogt R, Borensen C, Benter T (2016) On-road particle number measurements using a portable emission measurement system (PEMS). Atmos Environ 124:37–45. https://doi.org/10.1016/j.atmosenv.2015.11.012

    Article  CAS  Google Scholar 

  6. Hooftman N, Messagie M, Mierlo JV, Coosemans T (2018) A review of the european passenger car regulations – real driving emissions vs local air quality. Renew Sus Energy Reviews 86:1–21. https://doi.org/10.1016/j.rser.2018.01.012

    Article  CAS  Google Scholar 

  7. Olabi AG, Maizak D, Wilberforce T (2020) Review of the regulations and techniques to eliminate toxic emissions from diesel engine cars. Sci Total Environ 748:141249. https://doi.org/10.1016/j.scitotenv.2020.141249

    Article  CAS  PubMed  Google Scholar 

  8. Maizak D, Wilberforce T, Olabi AG (2020) DeNOx removal techniques for automotive applications – A review. Environ Adv 2:100021. https://doi.org/10.1016/j.envadv.2020.100021

    Article  Google Scholar 

  9. Neha R, Prasad S, Singh V (2020) A review on catalytic oxidation of soot emitted from diesel fuelled engines. J Envir Chem Engin 8:103945. https://doi.org/10.1016/j.jece.2020.103945

    Article  CAS  Google Scholar 

  10. Regulation (EС) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information

  11. Regulation (EC) No 595/2009 of the European Parliament and of the Council of 18 June 2009 on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehicles (Euro VI) and on access to vehicle repair and maintenance information and amending Regulation (EC) No 715/2007 and Directive 2007/46/EC and repealing Directives 80/1269/EEC, 2005/55/EC and 2005/78/EC

  12. Commission regulation (EU) 2016/427 of 10 March 2016 amending Regulation (EC) No 692/2008 as regards emissions from light passenger and commercial vehicles (Euro 6)

  13. Commission Regulation (EU) 2017/1154 of 7 June 2017 amending Regulation (EU) 2017/1151 supplementing Regulation (EC) No 715/2007 of the European Parliament and of the Council on type-approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information, amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) No 1230/2012 and repealing Regulation (EC) No 692/2008 and Directive 2007/46/EC of the European Parliament and of the Council as regards real-driving emissions from light passenger and commercial vehicles (Euro 6)

  14. Commission regulation (EU) (2018) 2018/1832 of 5 November 2018 amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) 2017/1151 for the purpose of improving the emission type approval tests and procedures for light passenger and commercial vehicles, including those for in-service conformity and real-driving emissions and introducing devices for monitoring the consumption of fuel and electric energy

  15. Guan B, Zhan R, Lin H (2015) Huang Z (2015) Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. J Environ Manage 154:225–258. https://doi.org/10.1016/j.jenvman.2015.02.027

    Article  CAS  PubMed  Google Scholar 

  16. Fino D, Bensaid S, Piumetti M, Russo N (2016) A review on the catalytic combustion of soot in diesel particulate filters for automotive applications: from powder catalysts to structured reactors. Appl Catal A 509:75–96. https://doi.org/10.1016/j.apcata.2015.10.016

    Article  CAS  Google Scholar 

  17. Johnson TV, Joshi A (2016) Directions in vehicle efficiency and emissions. Combust Engines 166:3–8. https://doi.org/10.19206/CE-2016-306

    Article  Google Scholar 

  18. Yashnik SA, Denisov SP, Danchenko NM, Ismagilov ZR (2016) Synergetic effect of pd addition on catalytic behavior of monolithicplatinum–manganese–alumina catalysts for diesel vehicle emissioncontrol. Appl Catal B 185:322–336. https://doi.org/10.1016/j.apcatb.2015.12.017

    Article  CAS  Google Scholar 

  19. Tsyrulnikov PG, Salnikov VS, Drozdov VA, Stuken SA, Bubnov AV, Grigorov EI, Kalinkin AV, Zaikovskii VI (1991) Investigation of thermal activation of aluminum-manganese total oxidation catalysts. Kinet Сatal 32:387–394

    Google Scholar 

  20. Yashnik SA, Ismagilov ZR, Kuznetsov VV, Ushakov VV, Rogov VA, Ovsyannikova IA (2006) High-temperature catalysts with a synergetic effect of Pd and manganese oxides. Catal Today 117:525–535. https://doi.org/10.1016/j.cattod.2006.06.036

    Article  CAS  Google Scholar 

  21. Yashnik SA, Ismagilov ZR (2012) Dependence of synergetic effect of palladium–manganese-hexaaluminate combustion catalyst on nature of palladium precursor. Top Catal 55:818–836. https://doi.org/10.1007/s11244-012-9874-3

    Article  CAS  Google Scholar 

  22. Yashnik SA, Ushakov VV, Leonov NL, Ismagilov ZR (2015) High-performance Mn-Al-O catalyst on reticulated foam materials for environmentally friendly catalytic combustion. Eurasian Chem Techn J 17:145–158

    Article  CAS  Google Scholar 

  23. Yashnik SA, Kuznetsov VV, Ismagilov ZR, Ushakov VV, Danchenko NM, Denisov SP (2004) Development of monolithic catalysts with low noble metal content for diesel vehicle emission control. Top Catal 30/31:293–298

    Article  CAS  Google Scholar 

  24. Yashnik SA, Porsin AV, Denisov SP, Danchenko NM, Ismagilov  ZR (2007) Development of monolithic catalysts with low noble metal content for diesel vehicle emission control. Top Catal 42/43:465–469. https://doi.org/10.1007/s11244-007-0226-7

    Article  CAS  Google Scholar 

  25. Yashnik SA, Ishchenko AV, Dovlitova LS, Ismagilov ZR (2017) The nature of synergetic effect of manganese oxide and platinum in Pt–MnOx–Alumina oxidation catalysts. Top Catal 60:52–72. https://doi.org/10.1007/s11244-016-0722-8

    Article  CAS  Google Scholar 

  26. Stein HJ, Huthwohl G, Lepperhoff G (1995) Performance of oxidation catalysts for heavy-duty diesel engines. Stud Sur Sci Catal 96:517–528

    Article  CAS  Google Scholar 

  27. Khosravi M, Abedi A, Hayes R, Epling WS, Votsmeier M (2014) Kinetic modelling of pt and Pt:Pd diesel oxidation catalysts. Appl Catal B 154–155:16–26. https://doi.org/10.1016/j.apcatb.2014.02.001

    Article  CAS  Google Scholar 

  28. Herreros JM, Gill SS, Lefort I, Tsolakis A, Millington P, Moss E (2014) Enhancing the low temperature oxidation performance over a pt and a Pt–Pd diesel oxidation catalyst. Appl Catal B 147:835–841. https://doi.org/10.1016/j.apcatb.2013.10.013

    Article  CAS  Google Scholar 

  29. Yashnik SA, Ismagilov ZR (2019) Pt–Pd/MnOx–Al2O3 oxidation catalysts: prospects of application for control of the soot emission with diesel exhaust gases. Kin Catal 60:453–498. https://doi.org/10.1134/S0023158419040207

    Article  CAS  Google Scholar 

  30. Neeft JPA, van Pruissen OP, Makkee M, Moulijn JA (1995) Catalytic oxidation of diesel soot: catalyst development. Studies in Surface Science and Catalysis. pp 549–561

    Google Scholar 

  31. Nejar N, Makkee M, Illan-Gomez MJ (2007) Catalytic removal of NOx and soot from diesel exhaust: Oxidation behaviour of carbon materials used as model soot. Appl Catal B 75:11–16. https://doi.org/10.1016/j.apcatb.2007.03.009

    Article  CAS  Google Scholar 

  32. Stanmore BR, Tschamber V, Brilhac J-F (2008) Oxidation of carbon by NOx, with particular reference to NO2 and N2O. Fuel 87:131–146. https://doi.org/10.1016/j.fuel.2007.04.012

    Article  CAS  Google Scholar 

  33. Arnal C, Alzuet MU, Miller A, Bilbao R (2012) Influence of water vapor addition on soot oxidation at high temperature. Energy 43:55–63. https://doi.org/10.1016/j.energy.2012.03.036

    Article  CAS  Google Scholar 

  34. Christensena JM, Grunwaldt J-D, Jensen AD (2017) Effect of NO2 and water on the catalytic oxidation of soot. Appl Catal B 205:182–188. https://doi.org/10.1016/j.apcatb.2016.12.024

    Article  CAS  Google Scholar 

  35. Park CS, Lee MW, Lee JH, Jeong EJ, Lee SH, Choung JW, Kim CH, Ham HC, Lee K-Y (2019) Promoting effect of H2O over macroporous Ce-Zr catalysts in soot oxidation. Mol Catal 474:110416. https://doi.org/10.1016/j.mcat.2019.110416

    Article  CAS  Google Scholar 

  36. Ji F, Men Y, Wang J, Sun Y, Wang Z, Zhao B, Tao X, Xu G (2019) Promoting diesel soot combustion efficiency by tailoring the shapes and crystal facets of nanoscale Mn3O4. Appl Catal B 242:227–237. https://doi.org/10.1016/j.apcatb.2018.09.092

    Article  CAS  Google Scholar 

  37. Jacquot F, Logie V, Brilhac JF, Gilot P (2002) Kinetics of the oxidation of carbon black by NO2: influence of the presence of water and oxygen. Carbon 40:335–343

    Article  CAS  Google Scholar 

  38. Jeguirim M, Tschamber V, Brilhac JF, Ehrburger P (2005) Oxidation mechanism of carbon black by NO2: Effect of water vapour. Fuel 84:1949–1956. https://doi.org/10.1016/j.fuel.2005.03.026

    Article  CAS  Google Scholar 

  39. Messerer A, Niessner R, Poschl U (2006) Comprehensive kinetic characterization of the oxidation and gasification of model and real diesel soot by nitrogen oxides and oxygen under engine exhaust conditions: measurement, Langmuir–Hinshelwood, and Arrhenius parameters. Carbon 44:307–324. https://doi.org/10.1016/j.carbon.2005.07.017

    Article  CAS  Google Scholar 

  40. Soltani S, Andersson R, Andersson B (2018) The effect of exhaust gas composition on the kinetics of soot oxidation and diesel particulate filter regeneration. Fuel 220:453–463. https://doi.org/10.1016/j.fuel.2018.02.037

    Article  CAS  Google Scholar 

  41. Maricq MM (2007) Chemical characterization of particulate emissions from diesel engines: a review. Aerosol Sci 38:1079–1118

    Article  CAS  Google Scholar 

  42. Muller J-O, Frank B, Jentoft RE, Schlogl R, Su DS (2012) The oxidation of soot particulate in the presence of NO2. Catal Today 191:106–111. https://doi.org/10.1016/j.cattod.2012.03.010

    Article  CAS  Google Scholar 

  43. Yashnik SA, Ismagilov ZR (2016) Problems of the soot formation in exhausts of internal combustion engines. Soot abatement by oxidation on Cu-Containing ZSM-5 catalysts (Minireview). Chem Sustain Dev 24:529–543. https://doi.org/10.15372/KhUR20160413

    Article  CAS  Google Scholar 

  44. Yashnik SA, Ismagilov ZR (2018) Studying the kinetics of soot oxidation on the surface PtPd/MnOxAl2O3 catalyst. Chem Sustain Dev 26:657–670. https://doi.org/10.15372/KhUR20180613

    Article  CAS  Google Scholar 

  45. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742. https://doi.org/10.1016/j.carbon.2005.02.018

    Article  CAS  Google Scholar 

  46. Stanmore BR, Brilhac JF, Gilot P (2010) The oxidation of soot: a review of experiments, mechanisms and models. Carbon 39:2247–2268

    Article  Google Scholar 

  47. Yezerets A, Currier NW, Kim DH, Eadler HA, Epling WS, Peden CHF (2005) Differential kinetic analysis of diesel particulate matter (soot) oxidation by oxygen using a step–response technique. Appl Catal B 61:120–129. https://doi.org/10.1016/j.apcatb.2005.04.014

    Article  CAS  Google Scholar 

  48. Reichert D, Finke T, Atanassova N, Bockhorn H, Kureti S (2008) Global kinetic modelling of the reaction of soot with O2 and NOx on Fe2O3 catalyst. Appl Catal B 84:803–812. https://doi.org/10.1016/j.apcatb.2008.06.014

    Article  CAS  Google Scholar 

  49. Neeft JPA, Nijhuis TX, Smakman E, Makkee M, Moulijn J (1997) Kinetics of the oxidation of diesel soot. Fuel 76:1129–1136

    Article  CAS  Google Scholar 

  50. Gimenez-Manogil J, Garcia-Garcia A (2015) Opportunities for ceria-based mixed oxides versus commercial platinum-based catalysts in the soot combustion reaction. Mechanistic implications. Fuel Process Technol 129:227–235. https://doi.org/10.1016/j.fuproc.2014.09.018

    Article  CAS  Google Scholar 

  51. Matarrese R, Castoldi L, Lietti L (2017) Oxidation of model soot by NO2 and O2 in the presence of water vapor. Chem Eng Sci 173:560–569. https://doi.org/10.1016/j.ces.2017.08.017

    Article  CAS  Google Scholar 

  52. Castoldi L, Matarrese R, Brambilla L, Serafini A, Tommasini M, Lietti L (2016) Effect of potassium on a model soot combustion: Raman and HRTEM evidences. Aerosol Sci Technol 50:405–415. https://doi.org/10.1080/02786826.2016.1158398

    Article  CAS  Google Scholar 

  53. Sharma HN, Pahalagedara L, Joshi A, Suib SL, Mhadeshwar AB (2012) Experimental study of carbon black and diesel engine soot oxidation kinetics using thermogravimetric analysis. Energy Fuels 26:5613–5625. https://doi.org/10.1021/ef3009025

    Article  CAS  Google Scholar 

  54. Knauer M, Schuster ME, Su D, Schlogl R, Niessner R, Ivleva NP (2009) Soot structure and reactivity analysis by Raman Microspectroscopy, temperature-programmed oxidation, and High-Resolution Transmission Electron Microscopy. J Phys Chem A 113:13871–13880. https://doi.org/10.1021/jp905639d

    Article  CAS  PubMed  Google Scholar 

  55. Seong HJ, Boehman A (2013) Evaluation of raman parameters using visible Raman microscopy for soot oxidative reactivity. Energy Fuels 27:1613–1624. https://doi.org/10.1021/ef301520y

    Article  CAS  Google Scholar 

  56. Zhdanov VP, Carlsson PA, Kasemo B (2008) Kinetics of oxidation of nm-sized soot spherules. Chem Phys Lett 454:341–344. https://doi.org/10.1016/j.cplett.2008.02.047

    Article  CAS  Google Scholar 

  57. Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM (1999) Modification of the surface chemistry of activated carbons. Carbon 37:1379–1389

    Article  CAS  Google Scholar 

  58. Pahalagedara L, Sharma H, Kuo C-H, Dharmarathna S, Joshi A, Suib SL, Mhadeshwar AB (2012) Structure and oxidation activity correlations for carbon blacks and diesel soot. Energy Fuels 26:6757–6764. https://doi.org/10.1021/ef301331b

    Article  CAS  Google Scholar 

  59. Gaddam CK, Vander Wal RL, Chen X, Yezerets A, Kamasamudram K (2016) Reconciliation of carbon oxidation rates and activation energies based on changing nanostructure. Carbon 98:545–556. https://doi.org/10.1016/j.carbon.2015.11.035

    Article  CAS  Google Scholar 

  60. Yang J, Mestl G, Herein D, Schoegl R, Find J (2000) Reaction of NO with carbonaceous materials. 2. Effect of oxygen on the reaction of NO with ashless carbon black. Carbon 38:729–740

    Article  CAS  Google Scholar 

  61. Muckenhuber H, Grothe H (2006) The heterogeneous reaction between soot and NO2 at elevated temperature. Carbon 44:546–559. https://doi.org/10.1016/j.carbon.2005.08.003

    Article  CAS  Google Scholar 

  62. Oi-Uchisawa J, Obuchi A, Ogata A, Enomoto R, Kushiyama S (1999) Effect of feed gas composition on the rate of carbon oxidation with Pt/SiO2 and the oxidation mechanism. Appl Catal B 21:9–17

    Article  CAS  Google Scholar 

  63. Setiabudi A, Makkee M, Moulijn JA (2004) The role of NO2 and O2 in the accelerated combustion of soot in diesel exhaust gases. Appl Catal B 50:185–194. https://doi.org/10.1016/j.apcatb.2004.01.004

    Article  CAS  Google Scholar 

  64. Azambre B, Collura S, Trichard JM, Weber JV (2006) Nature and thermal stability of adsorbed intermediates formed during the reaction of diesel soot with nitrogen dioxide. Appl Surf Sci 253:2296–2303. https://doi.org/10.1016/j.apsusc.2006.04.027

    Article  CAS  Google Scholar 

  65. Wu X, Liu Sh, Weng D, Lin F, Ran R (2011) MnOx–CeO2–Al2O3 mixed oxides for soot oxidation: activity and thermal stability. J Hazar Mater 187:283–290. https://doi.org/10.1016/j.jhazmat.2011.01.010

    Article  CAS  Google Scholar 

  66. Weiss BM, Iglesia E (2009) NO Oxidation Catalysis on Pt clusters: elementary steps, structural requirements, and synergistic effects of NO2 adsorption sites. J Phys Chem C 113:13331–13340. https://doi.org/10.1021/jp902209f

    Article  CAS  Google Scholar 

  67. Hauff K, Tuttlies U, Eigenberger G, Nieken U (2012) Platinum oxide formation and reduction during NO oxidation on a diesel oxidation catalyst – experimental results. Appl Catal B 123–124:107–116. https://doi.org/10.1016/j.apcatb.2012.04.008

    Article  CAS  Google Scholar 

  68. Stakheev AYu, Gololobov AM, Baeva GN, Bragina GO, Telegina NS (2010) Oxidation of soot with NO + O2 over pt catalyst: direct evaluation of pt catalyst efficiency in NO to NO2 recycling. Mendeleev Commun 20:269–270. https://doi.org/10.1016/j.mencom.2010.09.009

    Article  CAS  Google Scholar 

  69. Shen B, Lin X, Zhao Y (2013) Catalytic oxidation of NO with O2 over Pt/gamma-Al2O3 and La0.8Sr0.2MnO3. Chem Eng J 222:9–15. https://doi.org/10.1016/j.cej.2013.02.050

    Article  CAS  Google Scholar 

  70. Mulla SS, Chen N, Delgass WN, Epling WS, Ribeiro FH (2005) NO2 inhibits the catalytic reaction of NO and O2 over pt. Catal Lett 100:267–270. https://doi.org/10.1007/s10562-004-3466-1

    Article  CAS  Google Scholar 

  71. Buzkova Arvajova A, Boutikos P, Koci P (2019) Differentiation between O2 and NO2 impact on PtOx formation in a diesel oxidation catalyst. Chem Eng Sci 195:179–184. https://doi.org/10.1016/j.ces.2018.11.038

    Article  CAS  Google Scholar 

  72. Yezerets A, Currier NW, Eadler HA, Popuri S, Suresh A (2002) Quantitative flowreactor study of diesel soot oxidation process. SAE Tech Paper Ser No. https://doi.org/10.4271/2002-01-1684. 2002-01-1684

    Article  Google Scholar 

  73. Zhuang Q-L, Kyotani T, Tomita A (1994) The change of TPD pattern of O2-gasified carbon upon air exposure. Carbon 32:539–540. https://doi.org/10.1016/0008-6223(94)90177-5

    Article  CAS  Google Scholar 

  74. Starsinic M, Taylor RL, Walker P, Painter PC (1983) FTIR studies of Saran chars. Carbon 21:69–74. https://doi.org/10.1016/0008-6223(83)90158-6

    Article  CAS  Google Scholar 

  75. Suzuki T, Kyotani T, Tomita A (1994) Study on the Carbon-Nitric oxide reaction in the Presence of Oxygen. Ind Eng Chem Res 33:2840–2845

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the state task of the Boreskov Institute of Catalysis SB RAS (project AAAAA-A21-121011390010-7). Their support is gratefully acknowledged. The authors are grateful to Nikolaeva O.A. for assistance in the study of soot by DTA method, Efimova O.S. and Nikitin A.P. for their help in the study of soot by CHNS-O analysis and Raman spectroscopy. DTA, CHNS-O analysis and Raman studies were accomplished using the research facilities of Centers for collective use of scientific equipment of the FRC CCC of SB RAS (Kemerovo) and “National center of investigation of catalysts” at Boreskov Institute of Catalysis of SB RAS (Novosibirsk).

Author information

Authors and Affiliations

Authors

Contributions

SAY: conceptualization, methodology, validation, investigation, visualization, writing—original draft—review & editing. ZRI: supervision, conceptualization, writing—review & editing.

Corresponding author

Correspondence to Svetlana A. Yashnik.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashnik, S.A., Ismagilov, Z.R. Diesel Oxidation Catalyst Pt–Pd/MnOx–Al2O3 for Soot Emission Control: Effect of NO and Water Vapor on Soot Oxidation. Top Catal 66, 860–874 (2023). https://doi.org/10.1007/s11244-022-01779-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01779-z

Keywords

Navigation