Skip to main content
Log in

Structure-Activity Relationships of Pt-WOx/Al2O3 Prepared with Different W Contents and Pretreatment Conditions for Glycerol Conversion to 1,3-Propanediol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Turning waste glycerol into a fundamental chemical used in the petrochemical industry offers an opportunity to reduce not only waste from biodiesel production but also the consumption of petroleum-based chemicals. In the present work, glycerol was converted to 1,3-propanediol over Pt-WOx/Al2O3 catalysts, while focusing on the influence of W loading contents (10–20 wt.%) and catalyst pretreatment conditions, specifically the calcination temperatures of WOx/Al2O3 (700–900 °C), calcination temperatures of Pt-WOx/Al2O3 (350–450 °C) and reduction temperatures of Pt-WOx/Al2O3 (300–400 °C). The characteristics of the catalysts were identified by applying N2-sorption, XRD, Raman, CO pulse chemisorption, NH3-TPD, H2-TPR, H2-TPD, SEM and TEM-EDS and XPS. The W loading contents and pretreatment conditions strongly affected the activity and products selectivity. The W content and calcination temperature of WOx/Al2O3 at 15 wt.% and 800 °C, respectively, were evaluated as the most suitable in providing optimum W-O-W clusters to generate Hδ+ which was a key parameter for the generation of 1,3-propanediol. The calcination and reduction temperatures of Pt-WOx/Al2O3 at 400 °C and 350 °C, respectively, were mandatory to sufficiently convert PtCl2 to Pt3O4 and Pt3O4 to metallic Pt, respectively. The optimized Pt-WOx/Al2O3 catalyst achieved a high glycerol conversion (44.7%) with high selectivity toward 1,3-propanediol (45.1%) under a reaction temperature and pressure of 220 °C and 60 bar, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Authors can confirm that all relevant data are included in the article and/or its supplementary information files.

References

  1. Kurian JV (2005) A new polymer platform for the future-Sorona® from corn derived 1,3-propanediol. J Polym Environ 13:159–167. https://doi.org/10.1007/s10924-005-2947-7

    Article  CAS  Google Scholar 

  2. Bhowmik S, Darbha S (2021) Advances in solid catalysts for selective hydrogenolysis of glycerol to 1,3-propanediol. Catal Rev 63:1–65. https://doi.org/10.1080/01614940.2020.1794737

    Article  CAS  Google Scholar 

  3. DeConto RM, Pollard D, Alley RB, Velicogna I, Gasson E, Gonmez N, Sadai S, Condron A, Gilford DM, Ashe EL, Kopp RE, Li D, Dutton A (2021) The Paris climate agreement and future sea-level rise from Antarctica. Nature 593:83–89. https://doi.org/10.1038/s41586-021-03427-0

    Article  CAS  Google Scholar 

  4. Cheong S-H, Kim D, Dang HT, Kim D, Seo B, Cheong M, Hong SH, Lee H (2022) Methane oxidation to methyl trifluoroacetate by simple anionic palladium catalyst: comprehensive understanding of K2S2O8-based methane oxidation in CF3CO2H. J Catal 413:803–811. https://doi.org/10.1016/j.jcat.2022.07.031

    Article  CAS  Google Scholar 

  5. Dahnum D, Dang HT, Tran NT, Ha J-M, Lee H (2021) One-pot synthesis of 3D-ZIF-7 supported on 2D-Zn-benzimidazole-acetate and its catalytic activity in the methoxycarbonylation of aniline with dimethyl carbonate. J Ind Eng Chem 99:380–387. https://doi.org/10.1016/j.jiec.2021.04.049

    Article  CAS  Google Scholar 

  6. Nguyen DLT, Nguyen TM, Lee SY, Kim J, Kim SY, Le QV, Varma RS, Hwang YJ (2022) Electrochemical conversion of CO2 to value-added chemicals over bimetallic Pd-based nanostructures: recent progress and emerging trends. Environ Res 211:113116. https://doi.org/10.1016/j.envres.2022.113116

    Article  CAS  Google Scholar 

  7. Bok J, Lee SY, Lee B-H, Kim C, Nguyen DLT, Kim JW, Jung E, Lee CW, Jung Y, Lee HS, Kim J, Lee K, Ko W, Kim YS, Cho S-P, Yoo JS, Hyeon T, Hwang YJ (2021) Designing atomically dispersed Au on tensile-strained Pd for efficient CO2 electroreduction to formate. J Am Chem Soc 143:5386–5395. https://doi.org/10.1021/jacs.0c12696

    Article  CAS  Google Scholar 

  8. Kwon HC, Kim M, Grote J-P, Cho SJ, Chung MW, Kim H, Won DH, Zeradjanin AR, Mayrhofer KJJ, Choi M, Kim H, Choi CH (2018) Carbon monoxide as a promoter of atomically dispersed platinum catalyst in electrochemical hydrogen evolution reaction. J Am Chem Soc 140:16198–16205. https://doi.org/10.1021/jacs.8b09211

    Article  CAS  Google Scholar 

  9. Yusuff A, Kumar M, Obe BO, Mudashiru O (2021) Calcium oxide supported on coal fly ash (CaO/CFA) as an efficient catalyst for biodiesel production from Jatropha curcas oil. Top Catal. https://doi.org/10.1007/s11244-021-01478-1

    Article  Google Scholar 

  10. Jeong S-H, Lee H-S, Kim D-K, Lee J-P, Park J-Y, Hwang K-R, Lee J-S (2017) Biodiesel production from highly free fatty acid oils using a bifunctional solid catalyst. Top Catal 60:651–657. https://doi.org/10.1007/s11244-017-0772-6

    Article  CAS  Google Scholar 

  11. Keogh J, Deshmukh G, Manyar H (2022) Green synthesis of glycerol carbonate via transesterification of glycerol using mechanochemically prepared sodium aluminate catalysts. Fuel 310:122484. https://doi.org/10.1016/j.fuel.2021.122484

    Article  CAS  Google Scholar 

  12. Durán-Martín D, Lόpez Granados M, Fierro JLG, Pinel C, Mariscal R (2017) Deactivation of CuZn catalysts used in glycerol hydrogenolysis to obtain 1,2-propanediol. Top Catal 60:1062–1071. https://doi.org/10.1007/s11244-017-0807-z

    Article  CAS  Google Scholar 

  13. Jiang Y, Li X, Zhao H, Hou Z (2019) Esterification of glycerol with acetic acid over SO3H-functionalized phenolic resin. Fuel 255:115842. https://doi.org/10.1016/j.fuel.2019.115842

    Article  CAS  Google Scholar 

  14. Numpilai T, Cheng CK, Seubsai A, Faungnawakij K, Limtrakul J, Witoon T (2021) Sustainable utilization of waste glycerol for 1,3-propanediol production over Pt/WOx/Al2O3 catalysts: effects of catalyst pore sizes and optimization of synthesis conditions. Environ Pollut 272:116029. https://doi.org/10.1016/j.envpol.2020.116029

    Article  CAS  Google Scholar 

  15. Zhao B, Liang Y, Liu L, He Q, Dong JX (2021) Facilitating Pt-WOx species interaction for efficient glycerol hydrogenolysis to 1,3-propanediol. ChemCatChem 13:3695–3705. https://doi.org/10.1002/cctc.202100773

    Article  CAS  Google Scholar 

  16. Yang M, Wu K, Sun S, Ren Y (2022) Regulating oxygen defects via atomically dispersed alumina on Pt/WOx catalyst for enhanced hydrogenolysis of glycerol to 1,3-propanediol. Appl Catal B Environ 307:121207. https://doi.org/10.1016/j.apcatb.2022.121207

    Article  CAS  Google Scholar 

  17. Liu L, Kawakami S, Nakagawa Y, Tamura M, Tomishige K (2022) Highly active iridium-rhenium catalyst condensed on silica support for hydrogenolysis of glycerol to 1,3-propanediol. Appl Catal B Environ 256:117775. https://doi.org/10.1016/j.apcatb.2019.117775

    Article  CAS  Google Scholar 

  18. Liu L, Asano T, Nakagawa Y, Tamura M, Okumura K, Tomishige K (2019) Selective hydrogenolysis of glycerol to 1,3-propanediol over rhenium-oxide-modified iridium nanoparticles coating rutile titania support. ACS Catal 9:10913–10930. https://doi.org/10.1021/acscatal.9b03824

    Article  CAS  Google Scholar 

  19. García-Fernández S, Gandarias I, Requies J, Güemez MB, Bennici S, Auroux A, Arias PL (2015) New approaches to the Pt/WOx/Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1,3-propanediol. J Catal 323:65–75. https://doi.org/10.1016/j.jcat.2014.12.028

    Article  CAS  Google Scholar 

  20. Zhu S, Gao X, Zhu Y, Li Y (2015) Promoting effect of WOx on selective hydrogenolysis of glycerol to 1,3-propanediol over bifunctional Pt-WOx/Al2O3 catalysts. J Mol Catal A Chem 398:391–398. https://doi.org/10.1016/j.molcata.2014.12.021

    Article  CAS  Google Scholar 

  21. Lei N, Zhao X, Hou B, Yang M, Zhou M, Liu F, Wang A, Zhang T (2019) Effective hydrogenolysis of glycerol to 1,3-propanediol over metal-acid concerted Pt/WOx/Al2O3 catalysts. ChemCatChem 11:3903–3912. https://doi.org/10.1002/cctc.201900689

    Article  CAS  Google Scholar 

  22. Kitano T, Hayashi T, Uesaka T, Shishido T, Teramura K, Tanaka T (2014) Effect of high-temperature calcination on the generation of Brønsted acid sites on WO3/Al2O3. ChemCatChem 6:2011–2020. https://doi.org/10.1002/cctc.201400053

    Article  CAS  Google Scholar 

  23. Jarauta-Córdoba C, Bengoechea MO, Agirrezabal-Telleria I, Arias P-L, Gandarias I (2021) Insights into the nature of the active sites of Pt-WOx/Al2O3 catalysts for glycerol hydrogenolysis into 1,3-propanediol. Catalysts 11:1171. https://doi.org/10.3390/catal11101171

    Article  CAS  Google Scholar 

  24. Suwannapichat Y, Numpilai T, Chanlek N, Faungnawakij K, Chareonpanich M, Limtrakul J, Witoon T (2018) Direct synthesis of dimethyl ether from CO2 hydrogenation over novel hybrid catalysts containing a Cu-ZnO-ZrO2 catalyst admixed with WOx/Al2O3 catalysts: effects of pore size of Al2O3 support and W loading content. Energy Convers Manag 159:20–29. https://doi.org/10.1016/j.enconman.2018.01.016

    Article  CAS  Google Scholar 

  25. Graham GW, Weber WH, McBride JR, Peters CR (1991) Raman investigation of simple and complex oxides of platinum. J Raman Spectrosc 22:1–9. https://doi.org/10.1002/jrs.1250220102

    Article  CAS  Google Scholar 

  26. Wu X, Zhang L, Weng D, Liu S, Si Z, Fan J (2012) Total oxidation of propane on Pt/WOx/Al2O3 catalysts by formation of metastable Ptδ+ species interacted with WOx clusters. J Hazard Mater 225–226:146–154. https://doi.org/10.1016/j.jhazmat.2012.05.011

    Article  CAS  Google Scholar 

  27. Shi G, Cao Z, Xu J, Jin K, Bao Y, Xu S (2018) Effect of WOx doping into Pt/SiO2 catalysts for glycerol hydrogenolysis to 1,3-propanediol in liquid phase. Catal Lett 148:2304–2314. https://doi.org/10.1007/s10562-018-2464-7

    Article  CAS  Google Scholar 

  28. Liang Y, Shi G, Jin K (2020) Promotion effect of Al2O3 on Pt-WOx/SiO2 catalysts for selective hydrogenolysis of bioglycerol to 1,3-propanediol in liquid phase. Catal Lett 150:2365–2376. https://doi.org/10.1007/s10562-020-03140-z

    Article  CAS  Google Scholar 

  29. Li W, Chi K, Liu H, Ma H, Qu W, Wang C, Lv G, Tian Z (2017) Skeletal isomerization of n-pentane: a comparative study on catalytic properties of Pt/WOx-ZrO2 and Pt/ZSM-22. Appl Catal A Gen 537:59–65. https://doi.org/10.1016/j.apcata.2017.03.005

    Article  CAS  Google Scholar 

  30. Panagiotopoulou P, Kondarides DI (2008) Effects of alkali additives on the physicochemical characteristics and chemisorptive properties of Pt/TiO2 catalysts. J Catal 260:141–149. https://doi.org/10.1016/j.jcat.2008.09.014

    Article  CAS  Google Scholar 

  31. Lisitsyn AS, Yakovina OA (2018) On the origin of high-temperature phenomena in Pt/Al2O3. Phys Chem Chem Phys 20:2339–2350. https://doi.org/10.1039/C7CP06925A

    Article  CAS  Google Scholar 

  32. Aihara T, Miura H, Shishido T (2020) Investigation of the mechanism of the selective hydrogenolysis of C-O bonds over a Pt/WO3/Al2O3 catalyst. Catal Today 352:73–79. https://doi.org/10.1016/j.cattod.2019.10.008

    Article  Google Scholar 

  33. Barton DG, Shtein M, Wilson RD, Soled SL, Iglesia E (1999) Structure and electronic properties of solid acids based on tungsten oxide. J Phys Chem B 103:630–640. https://doi.org/10.1021/jp983555d

    Article  CAS  Google Scholar 

  34. Barton DG, Soled SL, Iglesia E (1998) Solid acid catalysts based on supported tungsten oxides. Top Catal 6:87–99. https://doi.org/10.1023/A:1019126708945

    Article  CAS  Google Scholar 

  35. Dang HT, Lee HW, Lee J, Choo H, Hong SH, Cheong M, Lee H (2018) Enhanced catalytic activity of (DMSO)2PtCl2 for the methane oxidation in the SO3–H2SO4 system. ACS Catal 8:11854–11862. https://doi.org/10.1021/acscatal.8b04101

    Article  CAS  Google Scholar 

  36. Lee HW, Dang HT, Kim H, Lee U, Ha J-M, Jae J, Cheong M, Lee H (2019) Pt black catalyzed methane oxidation to methyl bisulfate in H2SO4-SO3. J Catal 374:230–236. https://doi.org/10.1016/j.jcat.2019.04.042

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Kasetsart University Research and Development Institute (KURDI), (FF(KU)21.65).

Author information

Authors and Affiliations

Authors

Contributions

ND: investigation, writing-reviewing and editing. TN: investigation, validation, writing-original draft preparation, writing-reviewing and editing. CW: visualization, writing-reviewing and editing. AS: visualization, writing-reviewing and editing. KF: visualization, writing-reviewing and editing. CKC: visualization, writing-reviewing and editing. D-VNV: visualization, writing-reviewing and editing. SN: visualization, writing-reviewing and editing. NC: visualization, writing-reviewing and editing. TW: conceptualization, methodology, writing-original draft preparation, writing-reviewing and editing.

Corresponding authors

Correspondence to Thanapha Numpilai or Thongthai Witoon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolsiririttigul, N., Numpilai, T., Wattanakit, C. et al. Structure-Activity Relationships of Pt-WOx/Al2O3 Prepared with Different W Contents and Pretreatment Conditions for Glycerol Conversion to 1,3-Propanediol. Top Catal 66, 205–222 (2023). https://doi.org/10.1007/s11244-022-01753-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01753-9

Keywords

Navigation