Skip to main content

Advertisement

Log in

Synthesis and Catalytic Activity of Heterogenous Hybrid Nanocatalyst of Copper/Palladium MOF, RIT 62-Cu/Pd for Stille Polycondensation of Thieno[2,3-b]pyrrol-5-One Derivatives

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In the present work, Cu/Pd based MOF (RIT 62-Cu/Pd) with new organic linker was synthesied using solvothermal method and the synthesized MOF was characterized by X-ray diffraction analysis (XRD), Field Emission Scanning Electron Microscope (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy. The average particle size of the synthesized MOF RIT 62-Cu were 195 nm and MOF RIT 62-Cu/Pd were between 250 to 320 nm. Thermal analysis studies indicated that the synthesized MOFs were stable upto 500 °C. In the present work, the synthesized MOF RIT 62-Cu/Pd was used as a hybrid nanocatalyst for Stille polycondensation of thieno[2,3-b]pyrrol-5-one derivatives with three different donating groups. The resulting three polymers were characterized by ultraviolet–visible spectrophotometer (UV–Vis), gel permeation chromatography (GPC). The thermal stability of these polymers were studied using thermogravimetric analysis (TGA) and results indicate that polymers are stable upto 460 °C. Further, the reusability of synthesized MOFs showed best catalytic performance in Stille polycondensation with 82.56% polymer yield while the recyclability of the hybrid nanocatalyst was 81.25% at the end of three successive cycle.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data that are available for the present study enclosed in the supplementary information and more data can be obtained from the corresponding author by request email.

References

  1. Keri RS, Adimule V, Kendrekar P et al (2022) The Nano-Based Catalyst for the Synthesis of Benzimidazoles. Top Catal. https://doi.org/10.1007/s11244-022-01562

    Article  Google Scholar 

  2. Keri R, Patil M, Brahmkhatri VP et al (2022) Copper (II)-β-Cyclodextrin Promoted Kabachnik-Fields Reaction: An Efficient, One-Pot Synthesis of α-Aminophosphonates. Top Catal. https://doi.org/10.1007/s11244-021-01556-4

    Article  Google Scholar 

  3. Vinayak A, Revaigh MG, Adarsha HJ (2020) Synthesis and fabrication of y-doped ZnO nanoparticles and their application as a gas sensor for the detection of ammonia. J Mater Eng Perform 29:4–5

    Google Scholar 

  4. Fischer V, Lieberwirth I, Jakob G, Landfester K, Muñoz-Espí R (2013) Metal oxide/polymer hybrid nanoparticles with versatile functionality prepared by controlled surface crystallization. Adv Func Mater 23(4):451–466

    Article  CAS  Google Scholar 

  5. Adimule V, Nandi SS, Adarsha HJ (2021) A facile synthesis of Cr doped WO3 nanostructures, study of their current-voltage, power dissipation and impedance properties of thin films. J Nano Res 67:33–42

    Article  CAS  Google Scholar 

  6. Adimule V, Yallur BC, Batakurki SR, Gowda AHJ (2021) Microwave assisted synthesis of Cr doped Gd2O3 nanostructures and investigation on morphology optical photoluminescence properties. Nanosci Technol Int J. https://doi.org/10.1615/NanoSci.Techno.Int.J.2021039643

    Article  Google Scholar 

  7. Adimule V, Revaiah RG, Nandi SS, Jagadeesha AH (2021) Synthesis, characterization of Cr doped TeO2 nanostructures and its application as EGFET PH sensor. Electroanalysis 33(3):579–590

    Article  CAS  Google Scholar 

  8. Adimule V, Suryavanshi A, Yallur BC, Nandi SS (2020) A facile synthesis of poly (3-octyl thiophene): Ni0 4Sr0 6TiO3 hybrid nanocomposites for solar cell applications. Macromol Symp 392(1):2000001

    Article  CAS  Google Scholar 

  9. Khan H, Berk D (2013) Sol–gel synthesized vanadium doped TiO2 photocatalyst: physicochemical properties and visible light photocatalytic studies. J Sol-Gel Sci Technol 68(2):180–192

    Article  CAS  Google Scholar 

  10. Nandi SS, Suryavanshi A, Adimule V, Yallur BC (2020) Fabrication of novel rare earth doped ionic perovskite nanomaterials of Sr0.5, Cu0.4, Y0.1 and Sr0.5 and Mn0.5 for high power efficient energy harvesting photovoltaic cells. AIP Conf Proc 2274(1):020005

    Article  CAS  Google Scholar 

  11. Nandi SS, Suryavanshi A, Adimule V, Maradur SR (2020) Semiconductor current-voltage characteristics of some novel perovskite ionic nanocomposites of Sr0 5, Cu0 4, Y0 1 and Sr0 5, Mn0 5 and their electronic sensor applications. AIP Conf Proc 2274(1):020006

    Article  CAS  Google Scholar 

  12. Adimule V, Vageesha P, Bagihalli G, Bowmik D, Adarsha HJ (2019) Synthesis, characterization of hybrid nanomaterials of strontium, yttrium, copper doped with indole schiff base derivatives possessing dielectric and semiconductor properties. Emerg Res Electron Compt Sci Technol 1131–1140

  13. Ma Y, Qu H, Chi Z, Liu X, Yu Y, Guo Z, Wang L (2021) The highly dispersed Co-based nanoparticles encapsulated into porous N-doping carbon polyhedral with the low content of Ru modification as a promising cathode catalyst for long-life Li-O2 batteries. Nano Res 1–9

  14. Adimule V, Nandi SS, Yallur BC, Bhowmik D, Jagadeesha AH (2021) Optical, structural and photoluminescence properties of Gd x SrO: CdO nanostructures synthesized by Co precipitation method. J Fluoresc 31(2):487–499

    Article  CAS  PubMed  Google Scholar 

  15. Adimule V, Nandi SS, Yallur BC, Bhowmik D, Jagadeesha AH (2021) Enhanced photoluminescence properties of Gd (x–1) Sr x O: CdO nanocores and their study of optical, structural, and morphological characteristics. Mater Today Chem 20:100438

    Article  CAS  Google Scholar 

  16. Adimule VM, Manjunath JG, Rajendrachari S (2021) Optical, morphological and dielectric properties of novel zr 05 sr 04 gd2o3 nanostructure for capacitor applications. Физикa и тexнoлoгиипepcпeктивныxмaтepиaлoв–2021

  17. Adimule V, Yallur BC, Bhowmik D, Gowda AH (2021) Dielectric properties of P3BT doped ZrY2O3/CoZrY2O3 nanostructures for low cost optoelectronics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-021-00348-7

    Article  Google Scholar 

  18. Adimule V, Yallur BC, Bhowmik D, Gowda AHJ (2021) Morphology, structural and photoluminescence properties of shaping triple semiconductor Y x CoO: ZrO 2 nanostructures. J Mater Sci: Mater Electron 32(9):12164–12181

    CAS  Google Scholar 

  19. Adimule V (2018) Synthesis, characterization of Sr-Gd nanocomposites doped with zirconium possessing electrical and optical properties. AIP Conf Proc 1989(1):030001

    Article  CAS  Google Scholar 

  20. Nandi SS, Suryavanshi A, Adimule V, Yallur BC (2022) Fabrication of novel rare earth doped ionic perovskite nanomaterials of Sr0.5, Cu0.4, Y0.1 and Sr0.5 and Mn0.5 for high power efficient energy harvesting photovoltaic cells. AIP Conf Proc 2274(1):020005

    Google Scholar 

  21. Adimule V, Yallur BC, Challa M, Joshi RS (2021) Synthesis of hierarchical structured Gd doped α-Sb2O4 as an advanced nanomaterial for high performance energy storage devices. Heliyon, e08541

  22. Adimule V, Yallur BC, Keri R (2022) Studies on synthesis, characterization of Smx ZnO:CoO nanocomposites and its effect on photo catalytic degradation of textile dyes. Top Catal. https://doi.org/10.1007/s11244-022-01574-w

    Article  Google Scholar 

  23. Shaikh NM, Adimule V, Bagihalli GB et al (2022) A novel mixed Ag–Pd nanoparticles supported on SBA silica through [DMAP-TMSP-DABCO]OH basic ionic liquid for Suzuki coupling reaction. Top Catal. https://doi.org/10.1007/s11244-022-01586-6

    Article  Google Scholar 

  24. Huck WR, Mallat T, Baiker A (2000) Potential and limitations of palladium–cinchona catalyst for the enantioselective hydrogenation of a hydroxymethylpyrone. J Catal 193(1):1–4

    Article  CAS  Google Scholar 

  25. Alonso DA, Baeza A, Chinchilla R, Gómez C, Guillena G, Pastor IM, Ramón DJ (2018) Solid-supported palladium catalysts in Sonogashira reactions: recent developments. Catalysts 8(5):202

    Article  CAS  Google Scholar 

  26. Lebedeva MV, Yashtulov NA, Flid VR (2016) Catalysts with platinum–palladium nanoparticles on polymer matrix supports. Kinet Catal 57(6):847–852

    Article  CAS  Google Scholar 

  27. Shaikh, N M, Sawant, A D, Bagihalli, G B, Challa, M, & Adimule, V M (2022) Highly active mixed Au–Pd nanoparticles supported on RHA silica through immobilised ionic liquid for suzuki coupling reaction. Top Catal 1–10

  28. Li Y, Fan X, Qi J, Ji J, Wang S, Zhang G, Zhang F (2010) Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction. Nano Res 3(6):429–437

    Article  CAS  Google Scholar 

  29. Seyedi N, Saidi K, Sheibani H (2018) Green synthesis of Pd nanoparticles supported on magnetic graphene oxide by Origanum vulgare leaf plant extract: catalytic activity in the reduction of organic dyes and Suzuki-Miyaura cross-coupling reaction. Catal Lett 148(1):277–288

    Article  CAS  Google Scholar 

  30. Isaeva VI, Kustov LM (2010) The application of metal-organic frameworks in catalysis. Pet Chem 50(3):167–180

    Article  Google Scholar 

  31. Pascanu V, GonzálezMiera G, Inge AK, Martín-Matute B (2019) Metal–organic frameworks as catalysts for organic synthesis: a critical perspective. J Am Chem Soc 141(18):7223–7234

    Article  CAS  PubMed  Google Scholar 

  32. Pascanu V, Yao Q, Bermejo Gómez A, Gustafsson M, Yun Y, Wan W, Martín-Matute B (2013) Sustainable catalysis: rational Pd loading on MIL-101Cr-NH2 for more efficient and recyclable Suzuki-Miyaura reactions. Chem Eur J 19(51):17483–17493

    Article  CAS  PubMed  Google Scholar 

  33. Pascanu V, Hansen P, Bermejo Gómez A, Ayats C, Platero-Prats AE, Johansson MJ, Pericàs MÀ; Martín-Matute (2015) B Chem Sus Chem (8):123–13

  34. Liu Y, Wang J, Li T, Zhao Z, Pang W (2019) Base-free Pd-MOF catalyzed the Suzuki-Miyaura cross-coupling reaction of arenediazonium tetrafluoroborate salts with arylboronic acids. Tetrahedron 75(40):130540

    Article  CAS  Google Scholar 

  35. Cartagenova D, Bachmann S, Püntener K, Scalone M, Newton MA, Esteves FAP, Ranocchiari M (2022) Highly selective Suzuki reaction catalyzed by a molecular Pd–P-MOF catalyst under mild conditions: role of ligands and palladium speciation Catal Sci Technol

  36. Yuan N, Pascanu V, Huang Z, Valiente A, Heidenreich N, Leubner S, Zou X (2018) Probing the evolution of palladium species in Pd@ MOF catalysts during the heck coupling reaction: an operando X-ray absorption spectroscopy study. J Am Chem Soc 140(26):8206–8217

    Article  CAS  PubMed  Google Scholar 

  37. Saha D, Sen R, Maity T, Koner S (2013) Anchoring of palladium onto surface of porous metal–organic framework through post-synthesis modification and studies on Suzuki and Stille coupling reactions under heterogeneous condition. Langmuir 29(9):3140–3151

    Article  CAS  PubMed  Google Scholar 

  38. Remya VR, Kurian M (2019) Synthesis and catalytic applications of metal–organic frameworks: a review on recent literature. Int Nano Lett 9:17–29

    Article  CAS  Google Scholar 

  39. Hausdorf S, Wagler J, Moβig R, Mertens FO (2008) Proton and water activity-controlled structure formation in zinc carboxylate-based metal organic framework. J Phys Chem A 112(33):7567–7576

    Article  CAS  PubMed  Google Scholar 

  40. Bavykina A, Kolobov N, Khan IS, Bau JA, Ramirez A, Gascon J (2020) Metal-Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem Rev. https://doi.org/10.1021/acschemrev9b00685

    Article  PubMed  Google Scholar 

  41. Chen L, Wang HF, Li C, Xu Q (2020) Bimetallic metal–organic frameworks and their derivatives. Chem Sci 11(21):5369–5403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim D, Song KS, Buyukcakir O, Yildirim T, Coskun A (2018) Bimetallic metal organic frameworks with precisely positioned metal centers for efficient H 2 storage. Chem Commun 54(86):12218–12221

    Article  CAS  Google Scholar 

  43. Mazzola RD, Giese S, Benson CL, West FG (2004) Improved yields with added copper (I) salts in carbonylative Stille couplings of sterically hindered vinylstannanes. J Org Chem 69(1):220–223

    Article  CAS  PubMed  Google Scholar 

  44. Bathula C, Opoku H, Kadam A, Shrestha NK, Lee T, Noh YY (2019) Facile synthesis and optoelectronic exploration of silylthiophene substituted benzodithiophene polymer for organic field effect transistors. J Organomet Chem 880:317–321

    Article  CAS  Google Scholar 

  45. Cheng L, Zhong Y, Ni Z, Du H, Jin F, Rong Q, Han W (2014) Copper-catalyzed carbonylative Suzuki coupling of aryl iodides with arylboronic acids under ambient pressure of carbon monoxide. RSC Adv 4(83):44312–44316

    Article  CAS  Google Scholar 

  46. Hoshi T, Shishido Y, Suzuki A, Sasaki Y, Hagiwara H, Suzuki T (2018) Suzuki-Miyaura coupling reactions using low loading of ligand-activated palladium catalyst by cooperative copper catalysis. Chem Lett 47(6):780–783

    Article  CAS  Google Scholar 

  47. Bullough EK, Little MA, Willans CE (2013) Electrochemical synthesis of a tetradentate copper N-heterocyclic carbene arene and its transmetalation to palladium: activity of the palladium complex in suzuki–miyaura cross-coupling. Organometallics 32(2):570–577

    Article  CAS  Google Scholar 

  48. Adimule V, Nandi SS, Jagadeesha Gowda AH (2021) Enhanced power conversion efficiency of the P3BT (Poly-3-Butyl Thiophene) doped nanocomposites of Gd-TiO 3 as working electrode. Techno-Societal 2020:55–68

    Google Scholar 

  49. Opoku H, Choy JY, Kumar KA, Shrestha NK, Rabani I, Patil SA, Bathula C (2021) Facile synthesis and optoelectronic properties of thienopyrroledione based conjugated polymer for organic field effect transistors. Dyes Pigm 186:108973

    Article  CAS  Google Scholar 

  50. Badgujar S, Bathula C, Moon SJ, Lee SH, Lee SK (2014) Synthesis and characterization of dithieno [3, 2-b: 2′, 3′-d] thiophene-based copolymers for polymer solar cells. J Nanosci Nanotechnol 14(8):6060–6064

    Article  CAS  PubMed  Google Scholar 

  51. Demazeau G (2008) Solvothermal reactions: an original route for the synthesis of novel materials. J Mater Sci 43(7):2104–2114

    Article  CAS  Google Scholar 

  52. Phan NT, Nguyen TT, Ho P, Nguyen KD (2013) Copper-catalyzed synthesis of α-aryl ketones by metal-organic framework MOF-199 as an efficient heterogeneous catalyst. ChemCatChem 5(7):1822–1831

    Article  CAS  Google Scholar 

  53. Pai MM, Yallur BC, Batakurki S, Kendrekar P (2022) Facile synthesis of chitosan-ZnO-α-Fe2O3 as hybrid nanocatalyst and their application in nitrothiopheneacetate reduction and cyclization of aminothiopheneacetate. Top Catal. https://doi.org/10.1007/s11244-021-01544-8

    Article  Google Scholar 

  54. Pai MM, Batakurki SR, Yallur BC, Adimule VM, Kusanur R, Ahmed E (2022) Green synthesis of chitosan supported magnetic palladium nanoparticles using epiphyllum oxypetalum leaf extract (Pd-CsEo/Fe3O4 NPs) as hybrid nanocatalyst for Suzuki-Miyaura coupling of thiophene. Top Catal. https://doi.org/10.1007/s11244-022-01576-8

    Article  Google Scholar 

  55. Long J, Shen K, Chen L, Li Y (2016) Multimetal-MOF-derived transition metal alloy NPs embedded in an N-doped carbon matrix: highly active catalysts for hydrogenation reactions. J Mater Chem A 4(26):10254–10262

    Article  CAS  Google Scholar 

  56. Sanaei M, Fazaeli R, Aliyan H (2019) Pd/MOF-199: as an efficient heterogeneous catalyst for the Suzukie Miyaura cross-coupling reaction. J Chin Chem Soc 66(10):1290–1295

    Article  CAS  Google Scholar 

  57. Adimule V, Bhowmik D, Gowda AH (2021) Morphology, characterization, and gas sensor properties of Sr doped WO3 thin film nanostructures. Macromol Symp 400(1):2100065

    Article  CAS  Google Scholar 

  58. Ismail E, Khenfouch M, Dhlamini M, Dube S, Maaza M (2017) Green palladium and palladium oxide nanoparticles synthesized via Aspalathus linearis natural extract. J Alloy Compd 695:3632–3638

    Article  CAS  Google Scholar 

  59. Noor T, Ammad M, Zaman N, Iqbal N, Yaqoob L, Nasir H (2019) A highly efficient and stable copper BTC metal-organic framework derived electrocatalyst for oxidation of methanol in DMFC application. Catal Lett 149(12):3312–3327

    Article  CAS  Google Scholar 

  60. Rostamnia S, Alamgholiloo H, Liu X (2016) Pd-grafted open metal site copper-benzene-1, 4-dicarboxylate metal-organic frameworks (Cu-BDC MOF’s) as promising interfacial catalysts for sustainable Suzuki coupling. J Colloid Interface Sci 469:310–317

    Article  CAS  PubMed  Google Scholar 

  61. Kim D, Song KS, Buyukcaki O, Yildirim T, Coskun A (2018) Bimetallic metal organic frameworks with precisely positioned metal centers for efficient H2 storage. Chem Commun 54(86):12218–12221

    Article  CAS  Google Scholar 

  62. Kolodziejczyk B, Mayevsky D, Winther-Jensen B (2013) Enhanced absorption spectra of conducting polymers co-polymerised from thiophene derivatives. RSC Adv 3(14):4568–4573

    Article  CAS  Google Scholar 

  63. Li C, Bo Z (2015) New chemistry for organic photovoltaic materials 1–31

  64. Elumalai P, Mamlouk H, Yiming W, Feng L, Yuan S, Zhou HC, Madrahimov ST (2018) Recyclable and reusable heteroleptic nickel catalyst immobilized on metal–organic framework for Suzuki-Miyaura coupling. ACS Appl Mater Interfaces 10(48):41431–41438

    Article  CAS  PubMed  Google Scholar 

  65. Ardhapure AV, Gholap A, Schulzke C, Maiti D, Kapdi AR (2018) Stille cross-coupling reaction: early years to the current state of the art/ in palladium-catalyzed modification of nucleosides. Nucleotides and Oligonucleotides 19–36

  66. Xu S, Kim EH, Wei A, Negishi EI (2014) Pd-and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials. Sci Technol Adv Mater 15(4):044201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Díaz-Sánchez M, Díaz-García D, Prashar S, Gómez-Ruiz S (2019) Palladium nanoparticles supported on silica, alumina or titania: greener alternatives for Suzuki-Miyaura and other C-C coupling reactions. Environ Chem Lett 17(4):1585–1602

    Article  CAS  Google Scholar 

  68. Farina V, Kapadia S, Krishnan B, Wang C, Liebeskind LS (1994) On the nature of the" copper effect" in the Stille cross-coupling. J Org Chem 59(20):5905–5911

    Article  CAS  Google Scholar 

  69. Thathagar MB, Beckers J, Rothenberg G (2002) Ghosh AK, Born JR, Veitschegger AM, & Jurica M S (2020) Copper-catalyzed stille cross-coupling reaction and application in the synthesis of the spliceostatin core structure. J Org Chem 85(12):8111–8120

    Google Scholar 

  70. Lee V (2019) Application of copper (i) salt and fluoride promoted Stille coupling reactions in the synthesis of bioactive molecules. Org Biomol Chem 17(41):9095–9123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to M. S. Ramaiah University of Applied Sciences, Bangalore for providing basic facilities. Authors also acknowledge their thankfulness to Centre for Nano and Soft Materials, Bangalore, Ramaiah Institute of Technology(RIT), Bangalore and IISc, Bangalore for providing the characterization facilities.

Funding

There is no funding from any institution or any organization.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Sheetal R Batakurki has conceived the work, carried out characterization and contributed in drafting the manuscript. Mrs. Maya Pai M has carried the synthesis of polymers. Dr. Basappa Yallur has designed and synthesised the MOFs. Dr. Vinayak Adimule has contributed for the characterization of the synthesised polymers and partly by manuscript preparation.

Corresponding authors

Correspondence to Basappa C. Yallur or Sheetal R. Batakurki.

Ethics declarations

Conflict of interest

All the authors declared that they do not have any conflict.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 572 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maya Pai, M., Yallur, B.C., Batakurki, S.R. et al. Synthesis and Catalytic Activity of Heterogenous Hybrid Nanocatalyst of Copper/Palladium MOF, RIT 62-Cu/Pd for Stille Polycondensation of Thieno[2,3-b]pyrrol-5-One Derivatives. Top Catal (2022). https://doi.org/10.1007/s11244-022-01618-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-022-01618-1

Keywords

Navigation