Skip to main content
Log in

Optimization of the Metal Phase Composition of Ir–Pd/SiO2–Al2O3 Catalysts to Increase Thiotolerance in Selective Ring Opening of Decalin

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The activity and S-tolerance of monometallic and bimetallic Ir–Pd catalysts with different atomic ratio (Ir/Pd = 0.5, 1 and 2) and the same total metal content (1 wt%) supported on SiO2–Al2O3 were studied in the hydroconversion of decalin. In the absence of sulfur, bimetallic catalysts showed less activity and selectivity to decalin ring opening products compared to the iridium monometallic catalyst. However they exhibited a greater tolerance to thiophene poisoning (S = 10 ppm). The catalysts with Ir/Pd = 1 and 2 (atomic ratio), with similar metal dispersion, had better resistance to sulfur. The optimal ratio found, Ir/Pd = 1, could be related to the formation of bimetallic particles and an adequate acidity. The total acidity of the catalysts decreased with an increasing Ir/Pd atomic ratio. The addition of sulfur did not significantly modify the selectivity to ring opening products but reduced the formation of dehydrogenated (undesirable) and cracking products. The distribution of the cracking products confirmed that in the absence of S the metallic function controls the decalin ring opening mechanism, except with the monometallic Pd catalyst. With the addition of S the acid function predominates because the activity results correlate with the acidity of the catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

5. References

  1. Palos R, Gutiérrez A, Arandes J, Bilbao J (2018) Fuel 216:142–152

    Article  CAS  Google Scholar 

  2. Yun GN, Lee YK (2014) Appl Catal B Environ 150–151:647–655

    Article  CAS  Google Scholar 

  3. D’Ippolito SA, Especel C, Epron F, Pieck CL (2015) Fuel Process Technol 140:180–187

    Article  CAS  Google Scholar 

  4. D’Ippolito S, Ballarini A, Pieck C (2017) Energy Fuel 31:5461–5471

    Article  CAS  Google Scholar 

  5. D’Ippolito SA, Pirault-Roy L, Especel C, Epron F, Pieck CL (2018) Fuel Process Technol 177:6–15

    Article  CAS  Google Scholar 

  6. Nassreddine S, Massin L, Aouine M, Geantet C, Piccolo L (2011) J Catal 278:253–265

    Article  CAS  Google Scholar 

  7. Ziaei-Azad H, Sayari A (2016) J Catal 344:729–740

    Article  CAS  Google Scholar 

  8. McVicker G, Touvelle M, Hudson C, Vaughan D, Daage M, Hantzer S, Klein D, Ellis E, Cook B, Feeley O, Baumgartner J (1998) US Patent 5,763,731

  9. Finashina ED, Avaev VI, Tkachenko OP, Greish AA, Davshan NA, Kuperman A, Caro J, Kustov LM (2021) Ind Eng Chem Res 60:7802–7815

    Article  CAS  Google Scholar 

  10. Castaño P, Gutiérrez A, Hita I, Arandes J, Aguayo A, Bilbao J (2012) Energy Fuels 26:1509–1519

    Article  CAS  Google Scholar 

  11. Calemma V, Ferrari M, Rabl S, Weitkamp J (2013) Fuel 111:763–770

    Article  CAS  Google Scholar 

  12. Calemma V, Giardino R, Ferrari M (2010) Fuel Process Technol 91:770–776

    Article  CAS  Google Scholar 

  13. Fujikawa T, Idei K, Ebihara T, Mizuguchi H, Usui K (2000) Appl Catal A 192:253–261

    Article  CAS  Google Scholar 

  14. Yasuda H, Yoshimura Y (1997) Catal Lett 46:43–48

    Article  CAS  Google Scholar 

  15. Niquille-Röthlisberger A, Prins R (2007) Catal Today 123:198–207

    Article  CAS  Google Scholar 

  16. Navarro R, Pawelec B, Trejo J, Mariscal R, Fierro J (2000) J Catal 189:184–194

    Article  CAS  Google Scholar 

  17. Do PTM, Crossley S, Santikunaporn M, Resasco D (2007) Catalysis 20:33–64

    CAS  Google Scholar 

  18. Blanco E, Piccolo L, Laurenti D, di Felice L, Catherin N, Lorentz C, Geantet C, Calemma V (2018) Appl Catal A Gen 550:274–283

    Article  CAS  Google Scholar 

  19. Catherin N, Blanco E, Piccolo L, Laurenti D, Simonet F, Lorentz C, Leclerc E, Calemma V, Geantet C (2019) Catal Today 323:105–111

    Article  CAS  Google Scholar 

  20. Girgis MJ, Gates BC (1991) Ind Eng Chem Res 30:2021–2058

    Article  CAS  Google Scholar 

  21. Whitehurst DD, Farag H, Nagamatsu T, Sakanishi I, Mochida I (1998) Catal Today 45:299–305

    Article  CAS  Google Scholar 

  22. D’Ippolito SA, Ballarini AD, Rosas SM, Pirault-Roy L, Especel C, Epron F, Pieck CL (2020) Can J Chem Eng 99:1146–1157

    Article  CAS  Google Scholar 

  23. D’Ippolito S, Especel C, Vivier L, Epron F, Pieck C (2014) Appl Catal A Gen 469:541–549

    Article  CAS  Google Scholar 

  24. Nylén U, Sassu L, Melis S, Jäås S, Boutonnet M (2006) Appl Catal A Gen 299:1–13

    Article  CAS  Google Scholar 

  25. Haneda M, Fujitani T, Hamada H (2006) J Mol Catal A Chem 256:143–148

    Article  CAS  Google Scholar 

  26. Bourane A, Nawdali M, Bianchi D (2002) J Phys Chem B 106:2665–2671

    Article  CAS  Google Scholar 

  27. Mahata N (2016) Surf Interfaces 4:51–54

    Article  CAS  Google Scholar 

  28. Subramanian S, Schwarz JA (1991) Appl Catal 74:65–81

    Article  CAS  Google Scholar 

  29. Carnevillier C, Epron F, Marecot P (2004) Appl Catal A Gen 275:25–33

    Article  CAS  Google Scholar 

  30. Huang Y, Xue J, Gates W, Schwarz J (1988) J Catal 111:59–66

    Article  CAS  Google Scholar 

  31. Rodríguez-Castellón E, Mérida-Robles J, Díaz L, Maireles-Torres P, Jones DJ, Rozière J, Jiménez-López A (2004) Appl Catal A Gen 260:9–18

    Article  CAS  Google Scholar 

  32. Gusovius AF, Watling TC (1999) Appl Catal A 188:187–199

    Article  CAS  Google Scholar 

  33. Lieske H, Völter J (1985) J Phys Chem 89:1841–1842

    Article  CAS  Google Scholar 

  34. Nakagawa Y, Takada K, Tamura M, Tomishige K (2014) ACS Catal 4:2718–2726

    Article  CAS  Google Scholar 

  35. Rocha A, Moreno E, da Silva G, Zotin J, Faro A Jr (2008) Catal Today 133–135:394–399

    Article  CAS  Google Scholar 

  36. Biloen B, Helle J, Verbeek H, Dautzembverg F, Sachtler W (1980) J Catal 63:112–118

    Article  CAS  Google Scholar 

  37. Gao S, Schmidt LD (1989) J Catal 115:356–364

    Article  CAS  Google Scholar 

  38. Sinfelt JH (1973) Adv Catal 23:91–119

    CAS  Google Scholar 

  39. Regalbuto JR, Antos GJ (2004). In: Antos GJ, Aitani AM (eds) Preparation of reforming catalysts, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  40. Carvalho L, Pieck C, Rangel M, Fígoli N, Vera C, Parera J (2004) Appl Catal A Gen 269:105–116

    Article  CAS  Google Scholar 

  41. D’Ippolito S, Gutierrez L, Pieck C (2012) Appl Catal A Gen 445–446:195–203

    Article  CAS  Google Scholar 

  42. Chandra Mouli K, Sundaramurthy V, Dalai AK, Ring Z (2007) Appl Catal A Gen 321:17–26

    Article  CAS  Google Scholar 

  43. McVicker G, Daage M, Touvelle M, Hudson C, Klein D, Baird W, Cook B, Chen J, Hantzer S, Vaughan D, Ellis E, Feeley O (2002) J Catal 210:137–148

    Article  CAS  Google Scholar 

  44. Galadina A, Muraza O (2016) Fuel 18:618–629

    Article  CAS  Google Scholar 

  45. Arribas MA, Corma A, Díaz-Cabañas M, Martinez A (2004) Appl Catal A Gen 273:277–286

    Article  CAS  Google Scholar 

  46. Kim HJ, Song C (2021) J Catal 403:203–214

    Article  CAS  Google Scholar 

  47. Barbier J, Lamy-Pitara E, Marécot P, Boitiaux JP, Cosyns J, Verna F (1990) Adv Catal 37:279–318

    CAS  Google Scholar 

  48. Santikunaporn M, Herrera J, Jongpatiwut S, Resasco D, Alvarez W (2004) J Catal 228:100–113

    Article  CAS  Google Scholar 

  49. Santi D, Holl T, Calemma V, Weitkamp J (2013) Appl Catal A Gen 455:46–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CONICET (PIP 2021-2023 Grant 11220200100786 CO) and UNL (CAI + D-2020 Grants 50620190100073LI) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos L. Pieck.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Ippolito, S.A., Rosas, S.M., Ballarini, A.D. et al. Optimization of the Metal Phase Composition of Ir–Pd/SiO2–Al2O3 Catalysts to Increase Thiotolerance in Selective Ring Opening of Decalin. Top Catal 65, 1209–1217 (2022). https://doi.org/10.1007/s11244-022-01608-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01608-3

Keywords

Navigation