Skip to main content

Advertisement

Log in

High Catalytic Activity of a Nickel Phosphide Nanocatalyst Supported on Melamine-Doped Activated Carbon for Deoxygenation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Nickel-based catalysts are inexpensive and exhibit high catalytic activity; therefore, they have been extensively explored in deoxygenation reactions. Employing catalyst supports results in high product selectivity, and nitrogen-doped carbon has attracted significant interest as a catalyst support owing to the effect of nitrogen on the electronic properties. The present study demonstrated the synthesis of a Ni2P catalyst on melamine-doped carbon. The synthesized catalyst exhibited high deoxygenation activity, thereby facilitating the integrated catalytic upgradation and pyrolysis of palm kernel shells. Melamine-doped carbon was fabricated via carbonization of melamine-impregnated activated carbon. Subsequently, the Ni2P catalyst was loaded via sequential wet impregnation and temperature-programmed reduction. The presence of graphitic carbon nitride (g-C3N4) significantly affected the morphology and electronic properties of NixPy. Complexation between Ni and the N-containing functional groups on the carbon surface resulted in optimal distribution of the NixPy phase along the carbon support. Furthermore, electron transfer from the triazine structure to Ni substantially impacted the deoxygenation activity and the selectivity for aromatic and phenolic compounds. The outcomes of this study revealed that N-containing functional groups play a crucial role in optimizing the catalytic activity and the selective yield of alkylphenol products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roldugina EA, Naranov ER, Maximov AL, Karakhanov EA (2018) Hydrodeoxygenation of guaiacol as a model compound of bio-oil in methanol over mesoporous noble metal catalysts. Appl Catal A Gen 553:24–35. https://doi.org/10.1016/j.apcata.2018.01.008

    Article  CAS  Google Scholar 

  2. Wildschut J, Mahfud FH, Venderbosch RH, Heeres HJ (2009) Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind Eng Chem Res 48:10324–10334. https://doi.org/10.1021/ie9006003

    Article  CAS  Google Scholar 

  3. Gao D, Schweitzer C, Hwang HT, Varma A (2014) Conversion of guaiacol on noble metal catalysts: reaction performance and deactivation studies. Ind Eng Chem Res 53:18658–18667. https://doi.org/10.1021/ie500495z

    Article  CAS  Google Scholar 

  4. Janampelli S, Darbha S (2021) Selective deoxygenation of fatty acids to fuel-range hydrocarbons over Pt-MOx/ZrO2 (M = Mo and W) catalysts. Catal Today 375:174–180. https://doi.org/10.1016/j.cattod.2020.04.020

    Article  CAS  Google Scholar 

  5. Wang X, Wu P, Wang Z, Wang Z, Zhou L, Liu Y, Cheng H, Arai M, Zhang C, Zhao F (2021) Chlorine-modified Ru/TiO2 catalyst for selective guaiacol hydrodeoxygenation. ACS Sustain Chem Eng 9:3083–3094. https://doi.org/10.1021/acssuschemeng.0c07292

    Article  CAS  Google Scholar 

  6. Kang YH, Wei XY, Zhang XQ, Li YJ, Liu GH, Ma XR, Li X, Bai HC, Li ZN, Yan HJ, Zong ZM (2021) Deep catalytic hydroconversion of straw-derived bio-oil to alkanes over mesoporous zeolite Y supported nickel nanoparticles. Renew Energy 173:876–885. https://doi.org/10.1016/j.renene.2021.04.003

    Article  CAS  Google Scholar 

  7. Taghvaei H, Moaddeli A, Khalafi-Nezhad A, Iulianelli A (2021) Catalytic hydrodeoxygenation of lignin pyrolytic-oil over Ni catalysts supported on spherical Al-MCM-41 nanoparticles: effect of Si/Al ratio and Ni loading. Fuel 293:120493. https://doi.org/10.1016/j.fuel.2021.120493

    Article  CAS  Google Scholar 

  8. Kumar R, Strezov V, Lovell E, Lovell E, Kan T, Weldekidan H, He J, Jahan S, Dastjerdi B, Scott J (2019) Enhanced bio-oil deoxygenation activity by Cu/zeolite and Ni/zeolite catalysts in combined in-situ and ex-situ biomass pyrolysis. J Anal Appl Pyrolysis 140:148–160. https://doi.org/10.1016/j.jaap.2019.03.008

    Article  CAS  Google Scholar 

  9. Feng L, Li X, Wang Z, Liu B (2021) Catalytic hydrothermal liquefaction of lignin for production of aromatic hydrocarbon over metal supported mesoporous catalyst. Bioresour Technol 323:124569. https://doi.org/10.1016/j.biortech.2020.124569

    Article  CAS  Google Scholar 

  10. Chen K, Sang J, Wang Z, Ibrahim UK, Xia W, Guo A, Zhang J, Hou D (2021) Production of low-oxygenated bio-fuels (hydrocarbons and polymethylphenols) from lignocellulose by a two-stage strategy with non-noble metal catalysts. Fuel 286:119401. https://doi.org/10.1016/j.fuel.2020.119401

    Article  CAS  Google Scholar 

  11. Liu Q, Bai Y, Chen H, Chen M, Sang Y, Wu K, Ma Y, Li Y (2021) Catalytic conversion of enzymatic hydrolysis lignin into cycloalkanes over a gamma-alumina supported nickel molybdenum alloy catalyst. Bioresour Technol 323:124634. https://doi.org/10.1016/j.biortech.2020.124634

    Article  CAS  Google Scholar 

  12. Raikwar D, Majumdar S, Shee D (2021) Synergistic effect of Ni-Co alloying on hydrodeoxygenation of guaiacol over Ni-Co/Al2O3 catalysts. Mol Catal 499:111290. https://doi.org/10.1016/j.mcat.2020.111290

    Article  CAS  Google Scholar 

  13. Wu Y, Sun Y, Liang K, Yang Z, Tu R, Fan X, Cheng S, Yu H, Jiang E, Xu X (2021) Enhancing hydrodeoxygenation of bio-oil via bimetallic Ni-V catalysts modified by cross-surface migrated-carbon from biochar. ACS Appl Mater Interfaces 13:21482–21498. https://doi.org/10.1021/acsami.1c05350

    Article  CAS  Google Scholar 

  14. Yang F, Komarneni MR, Libretto NJ, Li L, Zhou W, Miller JT, Ge Q, Zhu X, Resasco DE (2021) Elucidating the structure of bimetallic NiW/SiO2 catalysts and its consequences on selective deoxygenation of m-cresol to toluene. ACS Catal 11:2935–2948. https://doi.org/10.1021/acscatal.0c05560

    Article  CAS  Google Scholar 

  15. Park CW, Kim JW, Kim HU, Park YK, Lam SS, Ha JM, Jae J (2021) Bimetallic Ni-Re catalysts for the efficient hydrodeoxygenation of biomass-derived phenols. Int J Energy Res 45(11):16349–16361. https://doi.org/10.1002/er.6882

    Article  CAS  Google Scholar 

  16. Salam MA, Cheah YW, Ho PH, Olsson L, Creaser D (2021) Hydrotreatment of lignin dimers over NiMoS-USY: effect of silica/alumina ratio. Sustain Energy Fuels 5:3445–3457. https://doi.org/10.1039/d1se00412c

    Article  CAS  Google Scholar 

  17. Zhou W, Xin H, Yang H, Du X, Yang R, Li D, Hu C (2018) The deoxygenation pathways of palmitic acid into hydrocarbons on silica-supported Ni12P5 and Ni2P catalysts. Catal 8(4):153. https://doi.org/10.3390/catal8040153

    Article  CAS  Google Scholar 

  18. Li H, Riisager A, Saravanamurugan S, Pandey A, Sangwan RS, Yang S, Luque R (2018) Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals. ACS Catal 8:148–187. https://doi.org/10.1021/acscatal.7b02577

    Article  CAS  Google Scholar 

  19. Li X, Sui ZY, Sun YN, Xiao PW, Wang XY, Han BH (2018) Polyaniline-derived hierarchically porous nitrogen-doped carbons as gas adsorbents for carbon dioxide uptake. Microporous Mesoporous Mater 257:85–91. https://doi.org/10.1016/j.micromeso.2017.08.027

    Article  CAS  Google Scholar 

  20. Rybarczyk MK, Lieder M, Jablonska M (2015) N-doped mesoporous carbon nanosheets obtained by pyrolysis of a chitosan–melamine mixture for the oxygen reduction reaction in alkaline media. RSC Adv 5:44969–44977. https://doi.org/10.1039/c5ra05725f

    Article  CAS  Google Scholar 

  21. Wang Q, Zhao J, Xu L, Yu L, Yao Z, Lan G, Guo L, Zhao J, Lu C, Pan Z, Wang J, Zhang Q, Li X (2021) Tuning electronic structure of palladium from wheat flour-derived N-doped mesoporous carbon for efficient selective hydrogenation of acetylene. Appl Surf Sci 562:150141. https://doi.org/10.1016/j.apsusc.2021.150141

    Article  CAS  Google Scholar 

  22. Chen L, Xing K, Shentu Q, Huang Y, Lv W, Yao Y (2021) Well-dispersed iron and nitrogen co-doped hollow carbon microsphere anchoring by g-C3N4 for efficient peroxymonosulfate activation. Chemosphere 280:130911. https://doi.org/10.1016/j.chemosphere.2021.130911

    Article  CAS  Google Scholar 

  23. Wang G-H, Cao Z, Gu D, Pfänder N, Swertz AC, Spliethoff B, Bongard HJ, Weidenthaler C, Schmidt W, Rinaldi R, Schüth F (2016) Nitrogen-doped ordered mesoporous carbon supported bimetallic PtCo nanoparticles for upgrading of biophenolics. Angew Chemie 128:8996–9001. https://doi.org/10.1002/ange.201511558

    Article  Google Scholar 

  24. Nie R, Peng X, Zhang H, Yu X, Lu X, Zhou D, Xia Q (2017) Transfer hydrogenation of bio-fuel with formic acid over biomass-derived N-doped carbon supported acid-resistant Pd catalyst. Catal Sci Technol 7:627–634. https://doi.org/10.1039/c6cy02461k

    Article  CAS  Google Scholar 

  25. Jin W, Pastor-Pérez L, Villora-Picó JJ, Pastor-Blas MM, Odriozola JA, Sepúlveda-Escribano A, Reina TR (2021) In-situ HDO of guaiacol over nitrogen-doped activated carbon supported nickel nanoparticles. Appl Catal A Gen 620:118033. https://doi.org/10.1016/j.apcata.2021.118033

    Article  CAS  Google Scholar 

  26. He Y, Laursen S (2018) The surface and catalytic chemistry of the first row transition metal phosphides in deoxygenation. Catal Sci Technol 8:5302–5314. https://doi.org/10.1039/c8cy01134f

    Article  CAS  Google Scholar 

  27. Wu SK, Lai PC, Lin YC, Wan HP, Lee HT, Chang YH (2013) Atmospheric hydrodeoxygenation of guaiacol over alumina-, zirconia-, and silica-supported nickel phosphide catalysts. ACS Sustain Chem Eng 1:349–358. https://doi.org/10.1021/sc300157d

    Article  CAS  Google Scholar 

  28. Pham LKH, Tran TTV, Kongparakul S, Reubroycharoen P, Karnjanakom S, Guan G, Samart C (2019) Formation and activity of activated carbon supported Ni2P catalysts for atmospheric deoxygenation of waste cooking oil. Fuel Process Technol 185:117–125. https://doi.org/10.1016/j.fuproc.2018.12.009

    Article  CAS  Google Scholar 

  29. Pham LKH, Ngo SD, Tran TTV, Kongparakul S, Reubroycharoen P, Chaiya C, Vo DVN, Guan G, Samart C (2019) Integrated catalytic hydrodeoxygenation of Napier grass pyrolysis vapor using a Ni2P/C catalyst. J Anal Appl Pyrolysis 140:170–178. https://doi.org/10.1016/j.jaap.2019.03.012

    Article  Google Scholar 

  30. Pham LKH, Tran TTV, Kongparakul S, Reubroycharoen P, Ding M, Vo DVN, Jaiyong P, Youngvises N, Samart C (2021) Data-driven prediction of biomass pyrolysis pathways toward phenolic and aromatic products. J Environ Chem Eng 9:104836. https://doi.org/10.1016/j.jece.2020.104836

    Article  CAS  Google Scholar 

  31. Zhao X, Wei L, Cheng S, Julson J (2015) Optimization of catalytic cracking process for upgrading camelina oil to hydrocarbon biofuel. Ind Crops Prod 77:516–526. https://doi.org/10.1016/j.indcrop.2015.09.019

    Article  CAS  Google Scholar 

  32. Ngo SD, Tran TTV, Kongparakul S, Reubroycharoen P, Kidkhuntod P, Chanlek N, Wang J, Guan G, Samart C (2020) Catalytic pyrolysis of Napier grass with nickel-copper core-shell bi-functional catalyst. J Anal Appl Pyrolysis 145:104745. https://doi.org/10.1016/j.jaap.2019.104745

    Article  CAS  Google Scholar 

  33. Prins R, Bussell ME (2012) Metal phosphides: preparation, characterization and catalytic reactivity. Catal Lett 142:1413–1436. https://doi.org/10.1007/s10562-012-0929-7

    Article  CAS  Google Scholar 

  34. Nie R, Miao M, Du W, Shi J, Liu Y, Hou Z (2016) Selective hydrogenation of CC bond over N-doped reduced graphene oxides supported Pd catalyst. Appl Catal B Environ 180:607–613. https://doi.org/10.1016/j.apcatb.2015.07.015

    Article  CAS  Google Scholar 

  35. Mortensen PM, Grunwaldt JD, Jensen PA, Jensen AD (2016) Influence on nickel particle size on the hydrodeoxygenation of phenol over Ni/SiO2. Catal Today 259:277–284. https://doi.org/10.1016/j.cattod.2015.08.022

    Article  CAS  Google Scholar 

  36. Yang F, Liu D, Zhao Y, Wang H, Han J, Ge Q, Zhu X (2018) Size dependence of vapor phase hydrodeoxygenation of m-cresol on Ni/SiO2 catalysts. ACS Catal 8:1672–1682. https://doi.org/10.1021/acscatal.7b04097

    Article  CAS  Google Scholar 

  37. Chen Z, Zhang J, Zheng S, Ding J, Sun J, Dong M, Abbas M, Chen Y, Jiang Z, Chen J (2018) The texture evolution of g-C3N4 nanosheets supported Fe catalyst during Fischer-Tropsch synthesis. Mol Catal 444:90–99. https://doi.org/10.1016/j.molcata.2016.12.011

    Article  CAS  Google Scholar 

  38. Wang S, Guo D, Zong MY, Fan CZ, Xu J, Wang DH (2021) Unravelling the strong metal-support interaction between Ru quantum dots and g-C3N4 for visible-light photocatalytic nitrogen fixation. Appl Catal A Gen 617:118112. https://doi.org/10.1016/j.apcata.2021.118112

    Article  CAS  Google Scholar 

  39. Xu J, Qi Y, Wang L (2019) In situ derived Ni2P/Ni encapsulated in carbon/g-C3N4 hybrids from metal–organic frameworks/g-C3N4 for efficient photocatalytic hydrogen evolution. Appl Catal B Environ 246:72–81. https://doi.org/10.1016/j.apcatb.2019.01.045

    Article  CAS  Google Scholar 

  40. Wen P, Zhao K, Li H, Li J, Li J, Ma Q, Geyer SM, Jiang L, Qiu Y (2020) In situ decorated Ni2P nanocrystal co-catalysts on g-C3N4 for efficient and stable photocatalytic hydrogen evolution via a facile co-heating method. J Mater Chem A 8:2995–3004. https://doi.org/10.1039/c9ta08361h

    Article  CAS  Google Scholar 

  41. Pan Z, Wang R, Nie Z, Chen J (2016) Effect of a second metal (Co, Fe, Mo and W) on performance of Ni2P/SiO2 for hydrodeoxygenation of methyl laurate. J Energy Chem 25:418–426. https://doi.org/10.1016/j.jechem.2016.02.007

    Article  Google Scholar 

  42. Xin H, Zhou W, Zhou K, Du X, Li D, Hu C (2019) Controlling the growth of activated carbon supported nickel phosphide catalysts via adjustment of surface group distribution for hydrodeoxygenation of palmitic acid. Catal Today 319:182–190. https://doi.org/10.1016/j.cattod.2018.03.051

    Article  CAS  Google Scholar 

  43. Oyama ST, Wang X, Lee YK, Bando K, Requejo FG (2002) Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques. J Catal 210:207–217. https://doi.org/10.1006/jcat.2002.3681

    Article  CAS  Google Scholar 

  44. Bui P, Cecilia JA, Oyama ST, Takagaki A, Infantes-Molina A, Zhao H, Li D, Rodríguez-Castellón E, López AJ (2012) Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound. J Catal 294:184–198. https://doi.org/10.1016/j.jcat.2012.07.021

    Article  CAS  Google Scholar 

  45. Jiang N, Zhang F, Song H (2019) Effect of reduction temperature on the structure and hydrodesulfurization performance of Na doped Ni2P/MCM-41 catalysts. RSC Adv 9:15488–15494. https://doi.org/10.1039/c9ra01582e

    Article  CAS  Google Scholar 

  46. Zhou S, Shang L, Zhao Y, Shi R, Waterhouse GIN, Huang YC, Zheng L, Zhang T (2019) Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv Mater 31:1900509. https://doi.org/10.1002/adma.201900509

    Article  CAS  Google Scholar 

  47. Xu Z, Zhou S, Zhu M (2021) Ni catalyst supported on nitrogen-doped activated carbon for selective hydrogenation of acetylene with high concentration. Catal Commun 149:106241. https://doi.org/10.1016/j.catcom.2020.106241

    Article  CAS  Google Scholar 

  48. Sawhill SJ, Phillips DC, Bussell ME (2003) Thiophene hydrodesulfurization over supported nickel phosphide catalysts. J Catal 215:208–219. https://doi.org/10.1016/s0021-9517(03)00018-6

    Article  CAS  Google Scholar 

  49. Xin H, Guo K, Li D, Yang H, Hu C (2016) Production of high-grade diesel from palmitic acid over activated carbon-supported nickel phosphide catalysts. Appl Catal B Environ 187:375–385. https://doi.org/10.1016/j.apcatb.2016.01.051

    Article  CAS  Google Scholar 

  50. Han Q, Wang B, Gao J, Cheng Z, Zhao Y, Zhang Z, Qu L (2016) atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10:2745–2751. https://doi.org/10.1021/acsnano.5b07831

    Article  CAS  Google Scholar 

  51. Wang J, Zhao Q, Hou H, Wu Y, Yu W, Ji X, Shao L (2017) Nickel nanoparticles supported on nitrogen-doped honeycomb-like carbon frameworks for effective methanol oxidation. RSC Adv 7:14152–14158. https://doi.org/10.1039/c7ra00590c

    Article  CAS  Google Scholar 

  52. Radkevich VZ, Senko TL, Wilson K, Grishenko LM, Zaderko AN, Diyuk VY (2008) The influence of surface functionalization of activated carbon on palladium dispersion and catalytic activity in hydrogen oxidation. Appl Catal A Gen 335:241–251. https://doi.org/10.1016/j.apcata.2007.11.029

    Article  CAS  Google Scholar 

  53. An T, Tang J, Zhang Y, Quan Y, Gong X, Al-Enizi AM, Elzatahry AA, Zang L, Zheng G (2016) Photoelectrochemical conversion from graphitic C3N4 quantum dot decorated semiconductor nanowires. ACS Appl Mater Interfaces 8:12772–12779. https://doi.org/10.1021/acsami.6b01534

    Article  CAS  Google Scholar 

  54. Liang Q, Li Z, Yu X, Huang ZH, Kang F, Yang QH (2015) Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv Mater 27:4634–4639. https://doi.org/10.1002/adma.201502057

    Article  CAS  Google Scholar 

  55. Huynh TM, Armbruster U, Nguyen LH, Nguyen LH, Nguyen DA, Martin A (2015) Hydrodeoxygenation of bio-oil on bimetallic catalysts: from model compound to real feed. J Sustain Bioenergy Syst 5:151–160. https://doi.org/10.4236/jsbs.2015.54014

    Article  CAS  Google Scholar 

  56. Oh S, Choi HS, Choi I-G, Choi JW (2017) Evaluation of hydrodeoxygenation reactivity of pyrolysis bio-oil with various Ni-based catalysts for improvement of fuel properties. RSC Adv 7:15116–15126. https://doi.org/10.1039/c7ra01166k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Council of Thailand and the National Natural Science Foundation of China Cooperation Project (contract no. NRCT/53/61). It was also supported by the Thammasat University Research Unit in Bioenergy and Catalysis. Mr. L.K.H. Pham acknowledges the contribution of Thammasat University scholarship to his postdoctoral study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanatip Samart.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 149 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, L.K.H., Kongparakul, S., Reubroycharoen, P. et al. High Catalytic Activity of a Nickel Phosphide Nanocatalyst Supported on Melamine-Doped Activated Carbon for Deoxygenation. Top Catal 66, 22–33 (2023). https://doi.org/10.1007/s11244-022-01585-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01585-7

Keywords

Navigation