Skip to main content
Log in

Electrocatalytic Oxidation of Hydrazine Using a Cobalt Bis(thiosemicarbazone) Complex

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this article we report the synthesis and characterisation of novel cobalt bis(thiosemicarbazone) complex [Co(NH3)2L]NO3 that is utilised as electrocatalyst for the oxidation of hydrazine using modified electrode approach. Electrochemical studies such as cyclic voltammetry, linear sweep voltammetry and chronoamperometry demonstrate superior electrocatalytic behaviour of the prepared complex as compared to bare electrodes. Based on Tafel plot analysis, for electrooxidation of hydrazine, initial one electron transfer is found to be the rate limiting step which is followed by fast three electron transfer for complete oxidation to nitrogen. Chronoamperometry technique show selective response towards hydrazine electrooxidation in the presence of interfering agents and sensitive with the detection limit of 1.7 µM. Based on our studies, cobalt complex modified electrode could be used as an alternative electrocatalyst compared to that of precious metal based electrocatalyst for hydrazine oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bhat ZM, Pandit D, Ardo S, Thimmappa R, Kottaichamy AR, Dargily NC, Devendrachari MC, Thotiyl MO (2020) An electrochemical neutralization cell for spontaneous water desalination. Joule 4:1730–1742

    CAS  Google Scholar 

  2. Thimmappa R, Gautam M, Bhat ZM, Thodika AR, Devendrachari MC, Mukhopadhyay S, Dargily NC, Thotiyl MO (2021) An atmospheric water electrolyzer for decentralized green hydrogen production. Cell Reports Phys Sci 2:100627

    Google Scholar 

  3. Kottaichamy AR, Begum S, Nazrulla MA, Dargily NC, Devendrachari MC, Bhat ZM, Thimmappa R, Kotresh HMN, Vinod CP, Thotiyl MO (2020) Unprecedented isomerism-activity relation in molecular electrocatalysis. J Phys Chem Lett 11:263–271

    CAS  PubMed  Google Scholar 

  4. Cao D, Chen D, Lan J, Wang G (2009) An alkaline direct NaBH4-H2O2 fuel cell with high power density. J Power Sources 190:346–350

    CAS  Google Scholar 

  5. Yan X, Meng F, Xie Y, Liu J, Ding Y (2012) Direct N2H4/H2O2 fuel cells powered by nanoporous gold leaves. Sci Rep 2:2–8

    Google Scholar 

  6. Amendola SC, Onnerud P, Kelly MT, Petillo PJ, Sharp-Goldman SL, Binder M (1999) Short communication a novel high power density borohydride-air cell. J Power Sources 84:130–133

    CAS  Google Scholar 

  7. Olu PY, Deschamps F, Caldarella G, Chatenet M, Joba N (2015) Investigation of platinum and palladium as potential anodic catalysts for direct borohydride and ammonia borane fuel cells. J Power Sources 297:492–503

    CAS  Google Scholar 

  8. Asazawa K, Yamada K, Tanaka H, Oka A, Taniguchi M, Kobayashi T (2007) A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles. Angew Chemie 46:8024–8027

    CAS  Google Scholar 

  9. Serov A, Padilla M, Roy AJ, Atanassov P, Sakamoto T, Asazawa K, Tanaka H (2014) Anode catalysts for direct hydrazine fuel cells: from laboratory test to an electric vehicle. Angew Chemie 53:10336–10339

    CAS  Google Scholar 

  10. Yi Q, Chu H, Tang M, Zhang Y, Liu X, Zhou Z, Nie H (2014) A novel membraneless direct hydrazine/air fuel cell. Fuel Cells 14:827–833

    CAS  Google Scholar 

  11. Yamazaki S, Siroma Z, Fujiwara N, Asahi M, Asazawa K, Tanaka H, Ioroi T (2013) Controllable electrochemical generation of H2 from hydrazine together with slight power generation using a membraneless cell. Electrochim Acta 94:38–41

    CAS  Google Scholar 

  12. Forbes FS, Van Splinter PA (2003) In: Meyers RA (ed) Encyclopedia of physical science and technology, 3rd edn. Academic Press, New York

  13. Serov A, Kwak C (2010) Direct hydrazine fuel cells: a review. Appl Catal B 98:1–9

    CAS  Google Scholar 

  14. Andrew MR, Gressler WJ, Johnson JK, Short RT, Williams KR (1972) Engineering aspects of hydrazine-air fuel-cell power systems. J Appl Electrochem 2:327–336

    CAS  Google Scholar 

  15. Yamada K, Yasuda K, Tanaka H, Miyazaki Y, Kobayashi T (2003) Effect of anode electrocatalyst for direct hydrazine fuel cell using proton exchange membrane. J Power Sources 122:132–137

    CAS  Google Scholar 

  16. Sankarapapavinasam S, Pushpanaden F, Ahmed MF (1989) Hydrazine and substituted hydrazines as corrosion inhibitors for lead in acetic acid. Br Corros J 24:39–42

    CAS  Google Scholar 

  17. Schmidt EW (2001) Hydrazine and its derivatives: preparation, properties, applications, 2nd edn. Wiley, New York

    Google Scholar 

  18. U.S. Environmental Protection Agency (1999) Integrated risk information system (IRIS) on hydrazine/hydrazine sulfate. National Center for Environmental Assessment, Office of Research and Development, Washington, DC

  19. U.S. Department of Health and Human Services (1993) Hazardous Substances Data Bank (HSDB, online database). National Toxicology Information Program, National Library of Medicine, Bethesda, MD

  20. World Health Organization (1987) Environmental health criteria 68: hydrazine. Switzerland, Geneva

    Google Scholar 

  21. Subramanian S, Narayanasastri S, Reddy ARK (2014) Doping induced detection and determination of propellant grade hydrazines by a kinetic spectrophotometric method based on nano and conventional polyaniline using halide ion releasing additives. RSC Adv 4:27404–27413

    CAS  Google Scholar 

  22. Oh JA, Shin HS (2015) Simple and sensitive determination of hydrazine in drinking water by ultra-high-performance liquid chromatography−tandem mass spectrometry after derivatization with naphthalene-2,3-dialdehyde. J Chromatogr A 1395:73–78

    CAS  PubMed  Google Scholar 

  23. Collins GE, Rose-Pehrsson SL (1993) Sensitive, fluorescent detection of hydrazine via derivatization with 2, 3-naphthalene dicarboxaldehyde. Anal Chim Acta 284:207–215

    CAS  Google Scholar 

  24. Tajik S, Beitollahi H, Mohammadi SZ, Azimzade H, Zhang K, Van Le Q, Yamauchi Y, Won Jang H, Shokouhimehr M (2020) Recent developments in electrochemical sensors for detecting hydrazine with different modified electrodes. RSC Adv 10:30481–30498

    CAS  Google Scholar 

  25. Akbar K, Kim JH, Lee Z, Kim M, Yi Y, Chun SH (2017) Superaerophobic graphene nano-hills for direct hydrazine fuel cells. NPG Asia Mater. https://doi.org/10.1038/am.2017.55

    Article  Google Scholar 

  26. Yang GW, Gao GY, Wang C, Xu CL, Li HL (2008) Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon 46:747–752

    CAS  Google Scholar 

  27. Lianga Y, Zhoua Y, Mab J, Zhaoa J, Chena Y, Tanga Y, Lu T (2011) Preparation of highly dispersed and ultrafine Pd/C catalyst and its electrocatalytic performance for hydrazine electrooxidation. Appl Catal B 103:388–396

    Google Scholar 

  28. Casella IG, Contursi M (2012) Electrocatalytic oxidation of some hydrazine compounds at glassy carbon electrode modified with co-gluconate complex. Electroanalysis 24:752–758

    CAS  Google Scholar 

  29. Kalinowski DS, Quach P, Richardson DR (2009) Thiosemicarbazones: the new wave in cancer treatment. Future Med Chem 1:1143–1151

    CAS  PubMed  Google Scholar 

  30. Hałdys K, Goldeman W, Anger-Góra N, Rossowska J, Latajka R (2021) Monosubstituted acetophenone thiosemicarbazones as potent inhibitors of tyrosinase: synthesis, inhibitory studies, and molecular docking. Pharmaceuticals 14:1–17

    Google Scholar 

  31. Vinayak A, Sudha M, Lalita KS (2017) Design, synthesis and characterization of novel amine derivatives of 5-[5-(Chloromethyl)-1, 3, 4-oxadiazol-2-yl]-2-(4-fluorophenyl)-pyridine as a new class of anticancer agents. Dhaka Univ J Pharm Sci 16:11–19

    CAS  Google Scholar 

  32. Vinayak A, Sudha M, Jagadeesha A, Lalita K (2015) Design, synthesis, characterization and cancer cell growth-inhibitory properties of novel derivatives of 2-(4-fluoro-phenyl)-5-(5-aryl substituted-1, 3, 4-oxadiazol-2-yl) pyridine. Br J Pharm Res 7:34–43

    Google Scholar 

  33. Adimule V, Medapa S, Kumar LS, Rao PK (2014) Novel substituted phenoxy derivatives of 2-chloro N-{5-[2-(4-methoxy-phenyl)-pyridin-3-yl]-[1,3,4]thiadiazol-2-yl}-acetamides:synthesis, characterization and in-vitro anticancer properties. J Pharm Chem Biol Sci 2:130–137

    CAS  Google Scholar 

  34. Adimule V, Medapa S, Rao PK, Kumar LS (2014) Synthesis, characterisation and anticancer activity of schiff base derivatives of 5-(2-phenoxypyridin-3-Yl)-1, 3, 4-thiadiazol-2-amine. Int Res J Pharm 4:62–66

    Google Scholar 

  35. Adimule V (2014) Design, synthesis and cytotoxic evaluation of novel 2-(4-N, N-dimethyl) pyridine containing 1, 3, 4-oxadiazole moiety. Asian J Biomed Pharm Sci 4:1–5

    Google Scholar 

  36. De Coen LM, Heugebaert TSA, García D, Stevens CV (2016) Synthetic entries to and biological activity of pyrrolopyrimidines. Chem Rev 116:80–139

    PubMed  Google Scholar 

  37. Štarha P, Trávníček Z (2019) Non-platinum complexes containing releasable biologically active ligands. Coord Chem Rev 395:130–145

    Google Scholar 

  38. Md Saari NH, Chua LS, Hasham R, Yuliati L (2020) Curcumin-loaded nanoemulsion for better cellular permeation. Sci Pharm 88:1–12

    Google Scholar 

  39. Sanati P, Chua LS, Nasiri R, Hashemi SS (2021) Nanoencapsulation of andrographolide rich extract for the inhibition of cervical and neuroblastoma cancer cells. J Biomed Nanotechnol 16:1370–1380

    Google Scholar 

  40. Dawood DAS, Chua LS, Tan TS, Alshemary AF (2021) Apoptotic mechanism of lantadenea from lantana camara leaves against prostatic cancer cells. Egypt J Chem 64:7503–7510

    Google Scholar 

  41. Md Saari NH, Chua LS, Hasham R (2020) Process optimization of curcumin-loaded coconut oil and honey nanoemulsion for better skin permeation. Int J Nanosci 19:1–9

    Google Scholar 

  42. Pramanik AK, Siddikuzzaman PD, Somasundaram K, Samuelson AG (2016) Biotin decorated gold nanoparticles for targeted delivery of a smart-linked anticancer active copper complex. In vitro and in vivo studies. Bioconjug Chem 27:2874–2885

    CAS  PubMed  Google Scholar 

  43. Xu P, Van Kirk EA, Zhan Y, Murdoch WJ, Radosz M, Shen Y (2007) Targeted charge-reversal nanoparticles for nuclear drug delivery. Angew Chemie Int Ed 46:4999–5002

    CAS  Google Scholar 

  44. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A (2020) Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 7:1–14

    Google Scholar 

  45. Lobana TS, Sharma R, Bawa G, Khanna S (2009) Bonding and structure trends of thiosemicarbazone derivatives of metals—an overview. Coord Chem Rev 253:977–1055

    CAS  Google Scholar 

  46. Christlieb M, Dilworth JR (2006) Ligands for molecular imaging: the synthesis of bis(thiosemicarbazone) ligands. Chem Eur J 12:6194–6206

    CAS  PubMed  Google Scholar 

  47. Paterson BM, Donnelly PS (2011) Copper complexes of bis(thiosemicarbazones): from chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals. Chem Soc Rev 40:3005–3018

    CAS  PubMed  Google Scholar 

  48. Park KC, Fouani L, Jansson PJ, Wooi D, Sahni S, Lane DJR, Palanimuthu D, Lok HC, Kovacevic Z, Huang MLH, Kalinowski DS, Richardson DR (2016) Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics 8:874–886

    CAS  PubMed  Google Scholar 

  49. Pramanik AK, Uzzaman S, Palanimuthu D, Somasundaram K, Samuelson AG (2016) Biotin decorated gold nanoparticles for targeted delivery of a smartly linked anticancer active copper complex: In vitro and in vivo studies. Bioconjugate Chem 27:2874–2885

    CAS  Google Scholar 

  50. Palanimuthu D, Shinde SV, Somasundaram K, Samuelson AG (2013) In vitro and in vivo anticancer activity of copper bis(thiosemicarbazone) complexes. J Med Chem 56:722–734

    CAS  PubMed  Google Scholar 

  51. Anjum R, Palanimuthu D, Kalinowski DS, Lewis W, Park KC, Kovacevic Z, Khan IU, Richardson DR (2019) Synthesis, characterization, and in vitro anticancer activity of copper and zinc bis(thiosemicarbazone) complexes. Inorg Chem 58:13709–13723

    CAS  PubMed  Google Scholar 

  52. Palanimuthu D, Poon R, Sahni S, Anjum R, Bernhardt PV, Kalinowski DS, Richardson DR (2017) A novel class of thiosemicarbazones show multi-functional activity for the treatment of Alzheimer’s disease. Eur J Med Chem 139:612–632

    CAS  PubMed  Google Scholar 

  53. Straistari T, Hardré R, Fize J, Shova S, Giorgi M, Réglier M, Artero V, Orio A (2018) Hydrogen evolution reactions catalyzed by a bis(thiosemicarbazone) cobalt complex: an experimental and theoretical study. Chem Eur J 24:8779–8786

    CAS  PubMed  Google Scholar 

  54. Haddad AZ, Cronin SP, Mashuta MS, Buchanan RM, Grapperhaus GA (2017) Metal-assisted ligand-centered electrocatalytic hydrogen evolution upon reduction of a bis(thiosemicarbazonato)Cu(II) complex. Inorg Chem 56:11254–11265

    CAS  PubMed  Google Scholar 

  55. Jain R, Mamun AA, Buchanan RM, Kozlowski PM, Grapperhaus CA (2018) Ligand-assisted metal-centered electrocatalytic hydrogen evolution upon reduction of a bis(thiosemicarbazonato)Ni(II) complex. Inorg Chem 57:13486–13493

    CAS  PubMed  Google Scholar 

  56. Straistari T, Fize JS, Réglier SM, Artero V, Orio M (2017) A thiosemicarbazone–nickel(II) complex as efficient electrocatalyst for hydrogen evolution. ChemCatChem 9:2262–2268

    CAS  Google Scholar 

  57. King AP, Gellineau HA, Ahn JE, MacMillan SN, Wilson JJ (2017) Bis(thiosemicarbazone) complexes of cobalt(III). Synthesis, characterization, and anticancer potential. Inorg Chem 56:6609–6623

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang H, Wang X, Zhang J, Zhang J (2008) Conventional catalyst ink, catalyst layer and MEA preparation. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers. Springer, London

    Google Scholar 

  59. Shinozaki K, Zack JW, Richards RM, Pivovar BS, Kocha SS (2015) Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: I. Impact of impurities, measurement protocols and applied corrections. J Electrochem Soc 162:F1144–F1158

    CAS  Google Scholar 

  60. Liu Z, Yang H, Kutz R, Masel RI (2018) CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using sustainion membranes. J Electrochem Soc 165:J3371–J3377

    CAS  Google Scholar 

  61. Tajik S, Beitollahi H, Hosseinzadeh R, Afshar AA, Varma RS, Jang HO, Shokouhimehr M (2021) Electrochemical detection of hydrazine by carbon paste electrode modified with ferrocene derivatives, ionic liquid, and CoS2-carbon nanotube nanocomposite. ACS Omega 6:4641–4648

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pletcher D, Greff R, Peat R, Peter LM (2002) Instrumental methods in electrochemistry. Woodhead Publishing, Cambridge

    Google Scholar 

  63. Bard AJ, Faulkner LR (2000) Electrochemical methods fundamentals and applications. Wiley, New York

    Google Scholar 

  64. Miao R, Shao L, Compton RG (2021) Single entity electrochemistry and the electron transfer kinetics of hydrazine oxidation. Nano Res 14:4132–4139

    CAS  Google Scholar 

  65. Miao R, Compton RG (2021) The electro-oxidation of hydrazine: a self-inhibiting reaction. J Phys Chem Lett 12:1601–1605

    CAS  PubMed  Google Scholar 

  66. Miao R, Chen L, Compton RG (2021) Electro-oxidation of hydrazine shows marcusian electron transfer kinetics. Sci China Chem 64:322–329

    CAS  Google Scholar 

  67. Golabi SM, Zare HR (1999) Electrocatalytic oxidation of hydrazine at a chlorogenic acid (CGA) modified glassy carbon electrode. J Electroanal Chem 465:168–176

    CAS  Google Scholar 

  68. Geraldo D, Linares C, Chen YY, Ureta-Zanartu S, Zagal JH (2002) Volcano correlations between formal potential and Hammett parameters of substituted cobalt phthalocyanines and their activity for hydrazine electro-oxidation. Electrochem Commun 4:182–187

    CAS  Google Scholar 

  69. Umar A, Kim SH, Kim JH, Hahn YB (2007) Two-step growth of hexagonal-shaped ZnO nanowires and nanorods and their properties. J Nanosci Nanotechnol 7:4522–4528

    CAS  PubMed  Google Scholar 

  70. Zare HR, Nasirrizadeh N (2007) Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine. Electrochim Acta 52:4153–4160

    CAS  Google Scholar 

  71. Jayasri D, Narayanan SS (2007) Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite–wax composite electrode. J Hazard Mater 144:348–354

    CAS  PubMed  Google Scholar 

  72. Crapnell RD, Banks CE (2021) Diagnostics electroanalytical overview: the electroanalytical sensing of hydrazine Introduction: hydrazine. Sens Diagn. https://doi.org/10.1039/D1SD00006C

    Article  Google Scholar 

  73. Zhang H, Huang J, Hou H, You T (2009) Electrochemical detection of hydrazine based on electrospun palladium nanoparticle carbon nanofibers. Electroanalysis 21:1869–1874

    Google Scholar 

  74. Rani G, Kumar M (2018) Amperometric determination of hydrazine based on copper oxide modified screen printed electrode. Sens Transducers 223:22–25

    Google Scholar 

  75. Rao D, Sheng Q, Zheng J (2016) Preparation of flower-like Pt nanoparticles decorated chitosan-grafted graphene oxide and its electrocatalysis of hydrazine. Sens Actuators B 236:192–200

    CAS  Google Scholar 

  76. Nassef HM, Radi AE, O’Sullivan CK (2006) Electrocatalytic oxidation of hydrazine at o-aminophenol grafted modified glassy carbon electrode: Reusable hydrazine amperometric sensor. J Electroanal Chem 592:139–146

    CAS  Google Scholar 

  77. Zhang Y, Bo X, Nsabimana A, Han C, Li M, Guo L (2015) Electrocatalytically active cobalt-based metal–organic framework with incorporated macroporous carbon composite for electrochemical applications. J Mater Chem A 3:732–738

    CAS  Google Scholar 

  78. Nemakal M, Aralekallu S, Mohammed I, Swamy S (2019) Electropolymerized octabenzimidazole phthalocyanine as an amperometric sensor for hydrazine. J Electroanal Chem 839:238–246

    CAS  Google Scholar 

  79. Ozoemena KI (2006) Anodic oxidation and amperometric sensing of hydrazine at a glassy carbon electrode modified with cobalt (II) phthalocyanine–cobalt (II) tetraphenylporphyrin (CoPc-(CoTPP)4) supramolecular complex. Sensors 6:874–891

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.M acknowledges the support received from DST-SERB (EMR/2016/000236) Project and Central University of Karnataka in the form of fellowships for three years and last one year respectively. V.N.N.S acknowledges the financial support received from DST-SERB sponsored grant under EMR category with file No (EMR/2016/000236). D.P acknowledges the UGC start-up Grant (No.F.30-489/2019(BSR)) and G.M acknowledge the research facilities and support of the management from Vivekananda College, Madurai and T.M, H.H, V.N.N.S and D.P. acknowledge the support of Central University of Karnataka, Kalaburagi.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Venkata Narayanan Naranammalpuram Sundaram or Duraippandi Palanimuthu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 770 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marichelvam, T., Murugan, G., Holla, H. et al. Electrocatalytic Oxidation of Hydrazine Using a Cobalt Bis(thiosemicarbazone) Complex. Top Catal (2022). https://doi.org/10.1007/s11244-022-01584-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-022-01584-8

Keywords

Navigation