Skip to main content

Advertisement

Log in

Recent Progression of Flower Like ZnSe@MoSe2 Designed as an Electrocatalyst for Enhanced Supercapacitor Performance

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Supercapacitors are a reliable device that has set an innovative path for the research line to face the energy gap. Consequently, remarkable steps were taken to prop up fabricated electrode materials electrochemical performance. ZnSe, MoSe2 and the composite of the mixed formation of ZnSe@MoSe2 has been individually investigated and the electrochemical performances have been studied for supercapacitor applications. The quality of the synthesized material was thoroughly examined using basic characterization studies. The binary composite of ZnSe@MoSe2 electrode delivered high specific capacitance of 450Fg−1 at 1Ag−1 in the charge–discharge profile and stable long cycle life retaining 99.6% over 2000 cycles at 10Ag−1 current density. Moreover, the existence of the flower like ZnSe@MoSe2 composites increases electrochemical performance by offering the additional electrolyte ions and the electrons mobility. Furthermore, full cell configuration via ZnSe@MoSe2//AC was assembled for 1.5 V and endowed with 43WhKg−1 energy density at 740WKg−1 power density signifying its capability over 99.3% of retention capacity. In favor of the potential applicability, full cell incorporated in series displayed 1.56 V and able to power up the three different LED’s, further enlightening the dominance in supercapacitor performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee SP, Ali GAM, Hegazy HH, Lim HN, Chong KF (2021) Energy Fuels 35:4559–4569. https://doi.org/10.1021/acs.energyfuels.0c04126

    Article  CAS  Google Scholar 

  2. Qian H, Wu B, Nie Z, Liu T, Liu P, He H, Wu J, Chen Z, Chen S (2021) Chem Eng J 420:127646. https://doi.org/10.1016/j.cej.2020.127646

    Article  CAS  Google Scholar 

  3. Guo Y, Wang T, Wu D, Tan Y (2021) Electrochim Acta 366:137404. https://doi.org/10.1016/j.electacta.2020.137404

    Article  CAS  Google Scholar 

  4. Karaman C, Karaman O, Show P, Orooji Y, Maleh HK (2021). Environ Res. https://doi.org/10.1016/j.envres.2021.112156

    Article  PubMed  Google Scholar 

  5. Aykan AKCA, Karaman O, Karaman C, Necip ATAR (2021) Surf Interfaces 25:101293. https://doi.org/10.1016/j.surfin.2021.101293

    Article  CAS  Google Scholar 

  6. Korkmaz S, Kariper IA (2020) J Energy Storage 27:101038. https://doi.org/10.1016/j.est.2019.101038

    Article  Google Scholar 

  7. Fan H, Zhang X, Wang Y, Lang J, Gao R (2020) J Power Sources 474:228603. https://doi.org/10.1016/j.jpowsour.2020.228603

    Article  CAS  Google Scholar 

  8. Toufani M, Kasap S, Tufani A, Bakan F, Weber S, Erdem E (2020) Nanoscale 12:12790–12800. https://doi.org/10.1039/D0NR02028A

    Article  CAS  PubMed  Google Scholar 

  9. Joseph N, Shafi PM, Bose AC (2020) Energy Fuels 34:6558–6597. https://doi.org/10.1021/acs.energyfuels.0c00430

    Article  CAS  Google Scholar 

  10. Guo C, Wang H, Liu Y, Zhang Y, Cui S, Guo Z, Ma C (2021) Energy Fuels 35:4524–4532. https://doi.org/10.1021/acs.energyfuels.0c03907

    Article  CAS  Google Scholar 

  11. Han W, Yuan L, Liu X, Wang C, Li J (2021) J Electroanal Chem 28:115643. https://doi.org/10.1016/j.jelechem.2021.115643

    Article  CAS  Google Scholar 

  12. Dai M, Zhao D, Liu H, Zhu X, Wu X, Wang B, Appl ACS (2021) Energy Mater 4:2637–2643

    CAS  Google Scholar 

  13. Ahmed R, Nabi G (2021) J Energy Storage 33:102115. https://doi.org/10.1016/j.est.2020.102115

    Article  Google Scholar 

  14. Das AK, Pan UN, Sharma V, Kim NH, Lee JH (2021) Chem Eng J 417:128019. https://doi.org/10.1016/j.cej.2020.128019

    Article  CAS  Google Scholar 

  15. Lee J, An GH (2021) Appl Surf Sci 539:148290. https://doi.org/10.1016/j.apsusc.2020.148290

    Article  CAS  Google Scholar 

  16. Li P, Zhang M, Yin H, Yao J, Liu X, Chen S (2021) Appl Surf Sci 536:14775. https://doi.org/10.1016/j.apsusc.2020.147751

    Article  CAS  Google Scholar 

  17. Pan Z, Lu Z, Xu L, Wang D (2020) Appl Surf Sci 510:145384. https://doi.org/10.1016/j.apsusc.2020.145384

    Article  CAS  Google Scholar 

  18. Pujari RB, Lokhande AC, Shelke AR, Kale SB, Lee DW, Lokhande CD (2021). Solid State Sci. https://doi.org/10.1016/j.solidstatesciences.2020.106449

    Article  Google Scholar 

  19. Tao Y, Wu Y, Chen H, Chen W, Wang J, Tong Y, Pei G, Shen Z, Guan C (2020) Chem Eng J 396:125364. https://doi.org/10.1016/j.cej.2020.125364

    Article  CAS  Google Scholar 

  20. Wang Z, Liu J, Hao X, Wang Y, Chen Y, Li P, Dong M (2020) New J Chem 44:13377–13381. https://doi.org/10.1039/D0NJ02105A

    Article  CAS  Google Scholar 

  21. Wu Y, Chen H, Lu Y, Yang J, Zhu X, Zheng Y, Lou G, Wu Y, Wu Q, Shen Z, Pan Z (2021) J Colloid Interf Sci 581:455–464. https://doi.org/10.1016/j.jcis.2020.08.013

    Article  CAS  Google Scholar 

  22. Xiong S, Jiang S, Wang J, Lin H, Lin M, Weng S, Liu S, Jiao Y, Xu Y, Chen J (2020) Electrochim Acta 340:135956. https://doi.org/10.1016/j.electacta.2020.135956

    Article  CAS  Google Scholar 

  23. Upadhyay S, Pandey OP (2021) J Energy Storage 40:102809. https://doi.org/10.1016/j.est.2021.102809

    Article  Google Scholar 

  24. Sharabati M, Abokwiek R, Othman A, Tawalbeh M, Karaman C, Orooji Y, Karimi F (2021) Environ Res 202:111694. https://doi.org/10.1016/j.envres.2021.111694

    Article  CAS  PubMed  Google Scholar 

  25. Maleh H, Karimi F, Fu L, Sanati A, Alizadeh M, Karaman C, Orooji Y (2022) J Hazard Mater 423:127058. https://doi.org/10.1016/j.jhazmat.2021.127058

    Article  CAS  Google Scholar 

  26. Karaman O, Ozdogan H, Uncu Y, Karaman C, Tanır A (2021) Kerntechnik 85:401–407. https://doi.org/10.3139/124.200022

    Article  Google Scholar 

  27. Zhang Q, Li H, Ma Y, Zhai T (2016). Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2016.07.005

    Article  Google Scholar 

  28. Huang K, Zhang JZ, Fan Y (2015) Mater Lett 152:244–247. https://doi.org/10.1016/j.matlet.2015.03.130

    Article  CAS  Google Scholar 

  29. Tian P, Tang T, Zhang J, Lin S, Huang G, Zeng J, Kong Z, Wang H, Xi J, Ji Z (2020) Ceram Int 46:13651–13659. https://doi.org/10.1016/j.ceramint.2020.02.151

    Article  CAS  Google Scholar 

  30. Mosquera E, Carvajal N, Morel M, Marin C (2017) J Lumin 192:814–817. https://doi.org/10.1016/j.jlumin.2017.08.017

    Article  CAS  Google Scholar 

  31. Zhang D, Guan H, Zhu W, Yu J, Lu H, Qiu W, Dong J, Zhang J, Luo Y, Chen Z (2017) Opt Express 23:28536. https://doi.org/10.1364/OE.25.028536

    Article  Google Scholar 

  32. MF Ehsana, M Shafiq, Hamid, Ali Shafiee, ZM Usman, I Khan, MN Ashiq, M Arfan, Appl Surf Sci 532, 2020, 147418https://doi.org/10.1016/j.apsusc.2020.147418

  33. Zheng D, Cheng P, Yao Q, Fang Y, Yang M, Zhu L, Zhang L (2020) J Alloys Compd 848:156588. https://doi.org/10.1016/j.jallcom.2020.156588

    Article  CAS  Google Scholar 

  34. Samuel E, Joshi B, Kim Y, Aldalbahi A, Rahaman M, Yoon SS (2020) ACS Sustain Chem Eng 8:3697–3708. https://doi.org/10.1021/acssuschemeng.9b06796

    Article  CAS  Google Scholar 

  35. G Sun, Yukun, Xiao, B Lu, X Jin, H Yang, C Dai, X Zhang, Y Zhao, L Qu ACS Appl Mater Interfaces 12, 2020, 7239-7248https://doi.org/10.1021/acsami.9b20629

  36. Liu S, Sarwar S, Wang J, Zhang H, Li T, Luo J, Zhang X (2021) J Mater Chem C 9:228–237. https://doi.org/10.1039/d0tc04718j

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by UGC-SAP, DST-FIST, PURSE, MHRD RUSA Phase II Grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Yuvakkumar, P. Senthil Kumar or Majede Bijad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangeetha Vidhya, M., Yuvakkumar, R., Senthil Kumar, P. et al. Recent Progression of Flower Like ZnSe@MoSe2 Designed as an Electrocatalyst for Enhanced Supercapacitor Performance. Top Catal 65, 684–693 (2022). https://doi.org/10.1007/s11244-021-01538-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01538-6

Keywords

Navigation