Skip to main content
Log in

Morphology and Environmental Applications of Bismuth Compound Nano-Photocatalytic Materials: A Review

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Many great breakthroughs have been made in the past five years in understanding the mechanism of bismuth compounds. However, the actual efficiency achieved with this material to date is far away from the theoretical conversion efficiency. The structure and morphology have been proven to be vital factors to enhance the electronic migration to influence photocatalytic performance. Bismuth compounds with different structures and morphologies have certain application prospects in environmental governance due to their small band gap and strong visible light response. This review is aimed at summarizing the recent experimental and bandgap computational breakthroughs in photocatalytic properties of bismuth oxides and halides, in the meanwhile, compared with the band gap adjustment, the recombination of photoexcited electron–hole (e–h+) pairs is one of the most important factors for the photocatalytic performance. Although bismuth compounds photocatalyst has been used for environmental applications, our understanding on the degradation mechanism of organic matters is limited. The target location and the degree of mineralization for different pollutants are not yet clear. Moreover, photocatalytic material needs to match the potential of the photogenerated e–h+ pairs to the potential required to degrade the pollutant to be oxidized or reduced. We aim to provide guidelines for the rational design and fabrication of highly efficient bismuth compounds materials for water treatment. Additionally, the potential applications of bismuth compounds in environment are presented for future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stoltzfus MW, Woodward PM, Seshadri R, Klepeis J-H, Bursten B (2007) Structure and bonding in SnWO4, PbWO4, and BiVO4: lone pairs vs inert pairs. Inorg Chem 46(10):3839–3850

    CAS  PubMed  Google Scholar 

  2. Kudo A, Kato H, Tsuji I (2004) Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem Lett 33(12):1534–1539

    CAS  Google Scholar 

  3. Rao PM, Cai L, Liu C, Cho IS, Lee CH, Weisse JM, Yang P, Zheng X (2014) Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett 14(2):1099–1105

    CAS  PubMed  Google Scholar 

  4. Bruton T (1974) Study of the liquidus in the system Bi2O3∙TiO2. J Solid State Chem 9(2):173–175

    Google Scholar 

  5. Masuda Y, Masumoto H, Baba A, Goto T, Hirai T (1992) Crystal growth, dielectric and polarization reversal properties of Bi4Ti3O12 single crystal. Jpn J Appl Phys 31(9S):3108

    CAS  Google Scholar 

  6. Hou D, Hu X, Hu P, Zhang W, Zhang M, Huang Y (2013) Bi4Ti3O12 nanofibers–BiOI nanosheets p–n junction: facile synthesis and enhanced visible-light photocatalytic activity. Nanoscale 5(20):9764–9772

    CAS  PubMed  Google Scholar 

  7. Su W-N, Ayele DW, Ochie V, Pan C-J, Hwang B-J (2014) The development of highly crystalline single-phase Bi20TiO32 nanoparticles for light driven oxygen evolution. Appl Catal B 150:363–369

    Google Scholar 

  8. Gan H, Liu J, Zhang H, Qian Y, Jin H, Zhang K (2018) Enhanced photocatalytic removal of hexavalent chromium and organic dye from aqueous solution by hybrid bismuth titanate Bi4Ti3O12/Bi2Ti2O7. Res Chem Intermed 44(3):2123–2138

    CAS  Google Scholar 

  9. Ye L, Deng K, Xu F, Tian L, Peng T, Zan L (2012) Increasing visible-light absorption for photocatalysis with black BiOCl. Phys Chem Chem Phys 14(1):82–85

    CAS  PubMed  Google Scholar 

  10. Xu J, Meng W, Zhang Y, Li L, Guo C (2011) Photocatalytic degradation of tetrabromobisphenol a by mesoporous BiOBr: efficacy, products and pathway. Appl Catal B 107(3–4):355–362

    CAS  Google Scholar 

  11. Hui C, Pu Y, Wan J, Guo Y, Cui C (2018) Enhanced photocatalytic degradation of Rhodamine B by reduced graphene oxides modified Bi12TiO20 under visible light. J Mater Sci: Mater Electron 29(6):4668–4674

    CAS  Google Scholar 

  12. Huang Y, Li H, Balogun M-S, Liu W, Tong Y, Lu X, Ji H (2014) Oxygen vacancy induced bismuth oxyiodide with remarkably increased visible-light absorption and superior photocatalytic performance. ACS Appl Mater Interfaces 6(24):22920–22927

    CAS  PubMed  Google Scholar 

  13. Meng A, Xing J, Guo W, Li Z, Wang X (2018) Electrospinning synthesis of porous Bi12TiO20/Bi4Ti3O12 composite nanofibers and their photocatalytic property under simulated sunlight. J Mater Sci 53(20):14328–14336

    CAS  Google Scholar 

  14. Ai Z, Ho W, Lee S (2011) Efficient visible light photocatalytic removal of NO with BiOBr-graphene nanocomposites. J Phys Chem C 115(51):25330–25337

    CAS  Google Scholar 

  15. Cao T, Li Y, Wang C, Zhang Z, Zhang M, Shao C, Liu Y (2011) Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures: in situ fabrication and high visible light photocatalytic activity. J Mater Chem 21(19):6922–6927

    CAS  Google Scholar 

  16. Yao WF, Wang H, Xu XH, Zhou JT, Yang XN, Zhang Y, Shang SX (2004) Photocatalytic property of bismuth titanate Bi2Ti2O7. Appl Catal A 259(1):29–33

    CAS  Google Scholar 

  17. Murugesan S, Subramanian VR (2009) Robust synthesis of bismuth titanate pyrochlore nanorods and their photocatalytic applications. Chem Commun 34:5109–5111

    Google Scholar 

  18. Hou J, Wang Z, Jiao S, Zhu H (2011) 3D Bi12TiO20/TiO2 hierarchical heterostructure: synthesis and enhanced visible-light photocatalytic activities. J Hazard Mater 192(3):1772–1779

    CAS  PubMed  Google Scholar 

  19. Zhou T, Hu J (2010) Mass production and photocatalytic activity of highly crystalline metastable single-phase Bi20TiO32 nanosheets. Environ Sci Technol 44(22):8698–8703

    CAS  PubMed  Google Scholar 

  20. Zhou J, Zou Z, Ray AK, Zhao X (2007) Preparation and characterization of polycrystalline bismuth titanate Bi12TiO20 and its photocatalytic properties under visible light irradiation. Ind Eng Chem Res 46(3):745–749

    CAS  Google Scholar 

  21. Wang J, Yu Y, Zhang L (2013) Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light. Appl Catal B 136:112–121

    Google Scholar 

  22. Ratova M, Tosheva L, Kelly PJ, Ohtani B (2019) Characterisation and properties of visible light-active bismuth oxide-titania composite photocatalysts. Sustain Mater Technol 22:e00112. https://doi.org/10.1016/j.susmat.2019.e00112

    Article  CAS  Google Scholar 

  23. Huang Q, Ye J, Si H, Ruan J, Xu M, Yang B, Tao T, Zhao Y, Chen M (2019) Enhanced performance of alkali-modified Bi2WO6/Bi0.15Ti0.85O2 toward photocatalytic oxidation of HCHO under visible light. Environ Sci Pollut Res 26(10):9672–9685. https://doi.org/10.1007/s11356-019-04277-0

    Article  CAS  Google Scholar 

  24. Vigil-Castillo HH, Hernández-Ramírez A, Guzmán-Mar JL, Ramos-Delgado NA, Villanueva-Rodríguez M (2018) Performance of Bi2O3/TiO2 prepared by sol-gel on p-Cresol degradation under solar and visible light. Environ Sci Pollut Res 26(5):4215–4223. https://doi.org/10.1007/s11356-018-2212-y

    Article  CAS  Google Scholar 

  25. Bray E, Doerr D, Wilkerson S, Glaser DD (2015) Ag3PO4/BiPO4 and Graphene Photocatalyzed Degradation of AB92 Dye for Environmental Purification.

  26. Liu G, Liu S, Lu Q, Sun H, Xiu Z (2014) Synthesis of mesoporous BiPO4 nanofibers by electrospinning with enhanced photocatalytic performances. Ind Eng Chem Res 53(33):13023–13029

    CAS  Google Scholar 

  27. Liu D, Cai W, Wang Y, Zhu Y (2018) Constructing a novel Bi2SiO5/BiPO4 heterostructure with extended light response range and enhanced photocatalytic performance. Appl Catal B 236:205–211

    CAS  Google Scholar 

  28. Liu Y-j, Cai R, Fang T, Wu J-g, Wei A (2015) Low temperature synthesis of Bi2WO6 and its photocatalytic activities. Mater Res Bull 66:96–100

    CAS  Google Scholar 

  29. Zhang Y, Park S-J (2017) Au–pd bimetallic alloy nanoparticle-decorated BiPO4 nanorods for enhanced photocatalytic oxidation of trichloroethylene. J Catal 355:1–10

    CAS  Google Scholar 

  30. Huang Y, Zhang X, Zhu G, Gao Y, Cheng Q, Cheng X (2019) Synthesis of silver phosphate/sillenite bismuth ferrite/graphene oxide nanocomposite and its enhanced visible light photocatalytic mechanism. Sep Purif Technol 215:490–499. https://doi.org/10.1016/j.seppur.2019.01.024

    Article  CAS  Google Scholar 

  31. Li G, Ding Y, Zhang Y, Lu Z, Sun H, Chen R (2011) Microwave synthesis of BiPO4 nanostructures and their morphology-dependent photocatalytic performances. J Colloid Interface Sci 363(2):497–503

    CAS  PubMed  Google Scholar 

  32. Fulekar M, Singh A, Dutta DP, Roy M, Ballal A, Tyagi A (2014) Ag incorporated nano BiPO4: sonochemical synthesis, characterization and improved visible light photocatalytic properties. RSC Adv 4(20):10097–10107

    CAS  Google Scholar 

  33. Zhang Y, Fan H, Li M, Tian H (2013) Ag/BiPO4 heterostructures: synthesis, characterization and their enhanced photocatalytic properties. Dalton Trans 42(36):13172–13178

    CAS  PubMed  Google Scholar 

  34. Yu J, Yu X, Huang B, Zhang X, Dai Y (2009) Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres. Cryst Growth Des 9(3):1474–1480

    CAS  Google Scholar 

  35. Chen Y-J, Tseng C-S, Tseng P-J, Huang C-W, Wu T, Lin Y-W (2017) Synthesis and characterization of Ag/Ag3PO4 nanomaterial modified BiPO4 photocatalyst by sonochemical method and its photocatalytic application. J Mater Sci: Mater Electron 28(16):11886–11899

    CAS  Google Scholar 

  36. Xu H, Xu Y, Li H, Xia J, Xiong J, Yin S, Huang C, Wan H (2012) Synthesis, characterization and photocatalytic property of AgBr/BiPO4 heterojunction photocatalyst. Dalton Trans 41(12):3387–3394

    CAS  PubMed  Google Scholar 

  37. Nayak S, Mohapatra L, Parida K (2015) Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction. J Mater Chem A. https://doi.org/10.1039/C5TA05002B

    Article  Google Scholar 

  38. Lin X, Liu D, Guo X, Sun N, Zhao S, Chang L, Zhai H, Wang Q (2015) Fabrication and efficient visible light-induced photocatalytic activity of Bi2MoO6/BiPO4 composite. J Phys Chem Solids 76:170–177

    CAS  Google Scholar 

  39. Lin X, Guo X-y, Zhao S-d, Gao X, Zhai H-j, Wang Q-w, Chang L-m (2014) Hydrothermal synthesis of disk-like Bi2WO6-BiPO4 heterojunctions and enhanced photocatalytic performance for rhodamine B degradation. Chin J Chem Phys 27(725):725–731

    CAS  Google Scholar 

  40. Tan G, She L, Liu T, Xu C, Ren H, Xia A (2017) Ultrasonic chemical synthesis of hybrid mpg-C3N4/BiPO4 heterostructured photocatalysts with improved visible light photocatalytic activity. Appl Catal B 207:120–133

    CAS  Google Scholar 

  41. Sakthivel S, Kisch H (2003) Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. ChemPhysChem 4(5):487–490

    CAS  PubMed  Google Scholar 

  42. Xu T, Zhu Y, Duan J, Xia Y, Tong T, Zhang L, Zhao D (2020) Enhanced photocatalytic degradation of perfluorooctanoic acid using carbon-modified bismuth phosphate composite: effectiveness, material synergy and roles of carbon. Chem Eng J 395:124991

    CAS  Google Scholar 

  43. Guo H, Guo Y, Liu L, Li T, Wang W, Chen W, Chen J (2014) Designed hierarchical synthesis of ring-shaped Bi2WO6@CeO2 hybrid nanoparticle aggregates for photocatalytic detoxification of cyanide. Green Chem 16(5):2539–2545

    CAS  Google Scholar 

  44. Huang J, Tan G-Q, Yang W, Zhang L-L, Ren H-J, Xia A (2013) Synthesis and photocatalytic properties of N/Bi2WO6 flower-like crystallites self-assembled from nanoflakes. J Cluster Sci 24(4):1139–1149

    CAS  Google Scholar 

  45. Murcia-López S, Navio J, Hidalgo M (2013) Role of activated carbon on the increased photocatalytic activity of AC/Bi2WO6 coupled materials. Appl Catal A 466:51–59

    Google Scholar 

  46. Zhang J, Huang ZH, Xu Y, Kang F (2013) Hydrothermal synthesis of graphene/Bi2WO6 composite with high adsorptivity and photoactivity for azo dyes. J Am Ceram Soc 96(5):1562–1569

    CAS  Google Scholar 

  47. Wang T, Zhang F, Xiao G, Zhong S, Lu C (2015) Synthesis of Bi2WO6/Bi2O3 composite with enhanced photocatalytic activity by a facile one-step hydrothermal synthesis route. Photochem Photobiol 91(2):291–297

    CAS  PubMed  Google Scholar 

  48. Cheng L, Kang Y (2014) Synthesis of NaBiO3/Bi2O3 heterojunction-structured photocatalyst and its photocatalytic mechanism. Mater Lett 117:94–97

    CAS  Google Scholar 

  49. Yu J, Xiong J, Cheng B, Yu Y, Wang J (2005) Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders. J Solid State Chem 178(6):1968–1972

    CAS  Google Scholar 

  50. Chu X, Shan G, Chang C, Fu Y, Yue L, Zhu L (2016) Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation. Front Environ Sci Eng 10(2):211–218

    CAS  Google Scholar 

  51. Ratova M, Kelly PJ, West GT, Tosheva L, Edge M (2017) Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity. Appl Surf Sci 392:590–597

    CAS  Google Scholar 

  52. Zhang C, Zhu Y (2005) Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem Mater 17(13):3537–3545

    CAS  Google Scholar 

  53. Hu S-P, Xu C-Y, Wang W-S, Ma F-X, Zhen L (2014) Synthesis of Bi2WO6 hierarchical structures constructed by porous nanoplates and their associated photocatalytic properties under visible light irradiation. Ceram Int 40(8):11689–11698

    CAS  Google Scholar 

  54. Zhang G-Y, Feng Y, Wu Q-S, Xu Y-Y, Gao D-Z (2012) Facile fabrication of flower-shaped Bi2WO6 superstructures and visible-light-driven photocatalytic performance. Mater Res Bull 47(8):1919–1924

    CAS  Google Scholar 

  55. Mehrdad A, Niknam Z (2015) Spectroscopic and viscometric studies on the interaction of ionic liquid, 1-butyl-3-methylimidazolium bromide with polyvinyl pyrrolidone. Fluid Phase Equilib 391:72–77

    CAS  Google Scholar 

  56. Kaur R, Tripathi S (2015) Study of conductivity switching mechanism of CdSe/PVP nanocomposite for memory device application. Microelectron Eng 133:59–65

    CAS  Google Scholar 

  57. Ge M, Liu L (2014) Sunlight-induced photocatalytic performance of Bi2WO6 hierarchical microspheres synthesized via a relatively green hydrothermal route. Mater Sci Semicond Process 25:258–263

    CAS  Google Scholar 

  58. Duan F, Zhang Q, Shi D, Chen M (2013) Enhanced visible light photocatalytic activity of Bi2WO6 via modification with polypyrrole. Appl Surf Sci 268:129–135

    CAS  Google Scholar 

  59. Zhang Z, Wang W, Jiang D, Xu J (2014) Synthesis of dumbbell-like Bi2WO6@ CaWO4 composite photocatalyst and application in water treatment. Appl Surf Sci 292:948–953

    CAS  Google Scholar 

  60. Lin X, Liu Z, Guo X, Liu C, Zhai H, Wang Q, Chang L (2014) Controllable synthesis and photocatalytic activity of spherical, flower-like and nanofibrous bismuth tungstates. Mater Sci Eng, B 188:35–42

    CAS  Google Scholar 

  61. Ying C, Chen X, S-l JI, H-b LIANG (2014) Preparation of HPA/Bi2WO6 and its photocatalytic properties for denitrification. J Fuel Chem Technol 42(8):978–985

    Google Scholar 

  62. Mi Y, Zeng S, Li L, Zhang Q, Wang S, Liu C, Sun D (2012) Solvent directed fabrication of Bi2WO6 nanostructures with different morphologies: synthesis and their shape-dependent photocatalytic properties. Mater Res Bull 47(9):2623–2630

    CAS  Google Scholar 

  63. Hu S-P, Xu C-Y, Zhen L (2013) Solvothermal synthesis of Bi2WO6 hollow structures with excellent visible-light photocatalytic properties. Mater Lett 95:117–120

    CAS  Google Scholar 

  64. Yuan A, Lei H, Wang Z, Dong X (2020) Improved photocatalytic performance for selective oxidation of amines to imines on graphitic carbon nitride/bismuth tungstate heterojunctions. J Colloid Interface Sci 560:40–49

    CAS  PubMed  Google Scholar 

  65. Tian G, Chen Y, Zhou W, Pan K, Dong Y, Tian C, Fu H (2011) Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts. J Mater Chem 21(3):887–892

    CAS  Google Scholar 

  66. Kongmark C, Martis V, Pirovano C, Löfberg A, Van Beek W, Sankar G, Rubbens A, Cristol S, Vannier R-N, Bordes-Richard E (2010) Synthesis of γ-Bi2MoO6 catalyst studied by combined high-resolution powder diffraction XANES and Raman Spectroscopy. Catalysis Today 157(1–4):257–262

    CAS  Google Scholar 

  67. Xie H, Shen D, Wang X, Shen G (2008) Microwave hydrothermal synthesis and visible-light photocatalytic activity of γ-Bi2MoO6 nanoplates. Mater Chem Phys 110(2–3):332–336

    CAS  Google Scholar 

  68. Yang G, Liang Y, Li K, Yang J, Wang K, Xu R, Xie X (2020) Engineering the dimension and crystal structure of bismuth molybdate photocatalysts via a molten salt-assisted assembly approach. J Alloys Compds 844:156231

    CAS  Google Scholar 

  69. Shimodaira Y, Kato H, Kobayashi H, Kudo A (2006) Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J Phys Chem B 110(36):17790–17797

    CAS  PubMed  Google Scholar 

  70. Zhang L, Xu T, Zhao X, Zhu Y (2010) Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Appl Catal B 98(3–4):138–146

    CAS  Google Scholar 

  71. Dai W, Yu J, Xu H, Hu X, Luo X, Yang L, Tu X (2016) Synthesis of hierarchical flower-like Bi2MoO6 microspheres as efficient photocatalyst for photoreduction of CO2 into solar fuels under visible light. CrystEngComm 18(19):3472–3480

    CAS  Google Scholar 

  72. Long J, Wang S, Chang H, Zhao B, Liu B, Zhou Y, Wei W, Wang X, Huang L, Huang W (2014) Bi2MoO6 nanobelts for crystal facet-enhanced photocatalysis. Small 10(14):2791–2795

    CAS  PubMed  Google Scholar 

  73. Sun Y, Wang W, Sun S, Zhang L (2013) A general synthesis strategy for one-dimensional Bi2MO6 (M= Mo, W) photocatalysts using an electrospinning method. CrystEngComm 15(39):7959–7964

    CAS  Google Scholar 

  74. Hao Y, Dong X, Wang X, Ma H, Zhang X (2016) Ultrathin-nanosheet-assembled Bi2MoO6 mesoporous hollow framework for realizing optimized sunlight-driven photocatalytic water oxidation. RSC Adv 6(104):102155–102158

    CAS  Google Scholar 

  75. Yu C, Wu Z, Liu R, Dionysiou DD, Yang K, Wang C, Liu H (2017) Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination. Appl Catal B 209:1–11

    CAS  Google Scholar 

  76. Zhang B, Li J, Gao Y, Chong R, Wang Z, Guo L, Zhang X, Li C (2017) To boost photocatalytic activity in selective oxidation of alcohols on ultrathin Bi2MoO6 nanoplates with Pt nanoparticles as cocatalyst. J Catal 345:96–103

    CAS  Google Scholar 

  77. Li B, Lai C, Qin L, Chu C, Zhang M, Liu S, Liu X, Yi H, He J, Li L (2020) Anchoring single-unit-cell defect-rich bismuth molybdate layers on ultrathin carbon nitride nanosheet with boosted charge transfer for efficient photocatalytic ciprofloxacin degradation. J Colloid Interface Sci 560:701–713

    CAS  PubMed  Google Scholar 

  78. Pan M, Zhang H, Gao G, Liu L, Chen W (2015) Facet-dependent catalytic activity of nanosheet-assembled bismuth oxyiodide microspheres in degradation of bisphenol A. Environ Sci Technol 49(10):6240–6248

    CAS  PubMed  Google Scholar 

  79. Ye L, Chen J, Tian L, Liu J, Peng T, Deng K, Zan L (2013) BiOI thin film via chemical vapor transport: photocatalytic activity, durability, selectivity and mechanism. Appl Catal B 130:1–7

    Google Scholar 

  80. Cao J, Xu B, Lin H, Luo B, Chen S (2012) Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal. Chem Eng J 185:91–99

    Google Scholar 

  81. Liu G, Wang T, Ouyang S, Liu L, Jiang H, Yu Q, Kako T, Ye J (2015) Band-structure-controlled BiO(ClBr)(1–x)/2 I x solid solutions for visible-light photocatalysis. J Mater Chem A 3(15):8123–8132

    CAS  Google Scholar 

  82. Jiang G, Wang R, Wang X, Xi X, Hu R, Zhou Y, Wang S, Wang T, Chen W (2012) Novel highly active visible-light-induced photocatalysts based on BiOBr with Ti doping and Ag decorating. ACS Appl Mater Interfaces 4(9):4440–4444. https://doi.org/10.1021/am301177k

    Article  CAS  PubMed  Google Scholar 

  83. Song S, Gao W, Wang X, Li X, Liu D, Xing Y, Zhang H (2012) Microwave-assisted synthesis of BiOBr/graphene nanocomposites and their enhanced photocatalytic activity. Dalton Trans 41(34):10472–10476. https://doi.org/10.1039/c2dt31088k

    Article  CAS  PubMed  Google Scholar 

  84. Zhang X, Chang X, Gondal M, Zhang B, Liu Y, Ji G (2012) Synthesis and photocatalytic activity of graphene/BiOBr composites under visible light. Appl Surf Sci 258(20):7826–7832

    CAS  Google Scholar 

  85. Shenawi-Khalil S, Uvarov V, Fronton S, Popov I, Sasson Y (2012) A novel heterojunction BiOBr/bismuth oxyhydrate photocatalyst with highly enhanced visible light photocatalytic properties. J Phys Chem C 116(20):11004–11012

    CAS  Google Scholar 

  86. Kong L, Jiang Z, Xiao T, Lu L, Jones MO, Edwards PP (2011) Exceptional visible-light-driven photocatalytic activity over BiOBr-ZnFe2O4 heterojunctions. Chem Commun (Camb) 47(19):5512–5514. https://doi.org/10.1039/c1cc10446b

    Article  CAS  Google Scholar 

  87. Cheng H, Huang B, Wang P, Wang Z, Lou Z, Wang J, Qin X, Zhang X, Dai Y (2011) In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chem Commun (Camb) 47(25):7054–7056. https://doi.org/10.1039/c1cc11525a

    Article  CAS  Google Scholar 

  88. Kong L, Jiang Z, Lai HH, Nicholls RJ, Xiao T, Jones MO, Edwards PP (2012) Unusual reactivity of visible-light-responsive AgBr–BiOBr heterojunction photocatalysts. J Catal 293:116–125

    CAS  Google Scholar 

  89. Chen L, Yin S-F, Luo S-L, Huang R, Zhang Q, Hong T, Au PC (2012) Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater. Ind Eng Chem Res 51(19):6760–6768

    CAS  Google Scholar 

  90. Jiang J, Wang H, Chen X, Li S, Xie T, Wang D, Lin Y (2017) Enhanced photocatalytic degradation of phenol and photogenerated charges transfer property over BiOI-loaded ZnO composites. J Colloid Interface Sci 494:130–138. https://doi.org/10.1016/j.jcis.2017.01.064

    Article  CAS  PubMed  Google Scholar 

  91. Zhang X, Zhang L, Xie T, Wang D (2009) Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J Phys Chem C 113(17):7371–7378

    CAS  Google Scholar 

  92. Cheng H, Huang B, Dai Y, Qin X, Zhang X (2010) One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. Langmuir 26(9):6618–6624. https://doi.org/10.1021/la903943s

    Article  CAS  PubMed  Google Scholar 

  93. Cao J, Xu B, Lin H, Luo B, Chen S (2012) Novel heterostructured Bi2S3/BiOI photocatalyst: facile preparation, characterization and visible light photocatalytic performance. Dalton Trans 41(37):11482–11490. https://doi.org/10.1039/c2dt30883e

    Article  CAS  PubMed  Google Scholar 

  94. Li TB, Chen G, Zhou C, Shen ZY, Jin RC, Sun JX (2011) New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Trans 40(25):6751–6758. https://doi.org/10.1039/c1dt10471c

    Article  CAS  PubMed  Google Scholar 

  95. Liu Z, Xu W, Fang J, Xu X, Wu S, Zhu X, Chen Z (2012) Decoration of BiOI quantum size nanoparticles with reduced graphene oxide in enhanced visible-light-driven photocatalytic studies. Appl Surf Sci 259:441–447

    CAS  Google Scholar 

  96. Xiao X, Hao R, Liang M, Zuo X, Nan J, Li L, Zhang W (2012) One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A. J Hazard Mater 233–234:122–130. https://doi.org/10.1016/j.jhazmat.2012.06.062

    Article  CAS  PubMed  Google Scholar 

  97. Cao J, Li X, Lin H, Chen S, Fu X (2012) In situ preparation of novel p-n junction photocatalyst BiOI/(BiO)2CO3 with enhanced visible light photocatalytic activity. J Hazard Mater 239–240:316–324. https://doi.org/10.1016/j.jhazmat.2012.08.078

    Article  CAS  PubMed  Google Scholar 

  98. Liu H, Cao W, Su Y, Wang Y, Wang X (2012) Synthesis, characterization and photocatalytic performance of novel visible-light-induced Ag/BiOI. Appl Catal B 111:271–279

    Google Scholar 

  99. Zhu L, He C, Huang Y, Chen Z, Xia D, Su M, Xiong Y, Li S, Shu D (2012) Enhanced photocatalytic disinfection of E. coli 8099 using Ag/BiOI composite under visible light irradiation. Sep Purif Technol 91:59–66

    CAS  Google Scholar 

  100. Cao J, Xu B, Luo B, Lin H, Chen S (2011) Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties. Catal Commun 13(1):63–68

    CAS  Google Scholar 

  101. Li Y, Wang J, Yao H, Dang L, Li Z (2011) Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities. Catal Commun 12(7):660–664

    CAS  Google Scholar 

  102. Li Y, Wang J, Liu B, Dang L, Yao H, Li Z (2011) BiOI-sensitized TiO2 in phenol degradation: a novel efficient semiconductor sensitizer. Chem Phys Lett 508(1–3):102–106

    CAS  Google Scholar 

  103. Xiong J, Cheng G, Qin F, Wang R, Sun H, Chen R (2013) Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation. Chem Eng J 220:228–236

    CAS  Google Scholar 

  104. Hu J, Fan W, Ye W, Huang C, Qiu X (2014) Insights into the photosensitivity activity of BiOCl under visible light irradiation. Appl Catal B 158:182–189

    Google Scholar 

  105. Sun J, Wu S, Yang S-Z, Li Q, Xiong J, Yang Z, Gu L, Zhang X, Sun L (2018) Enhanced photocatalytic activity induced by sp3 to sp2 transition of carbon dopants in BiOCl crystals. Appl Catal B 221:467–472

    CAS  Google Scholar 

  106. Ye L, Liu J, Jiang Z, Peng T, Zan L (2013) Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl Catal B 142:1–7

    Google Scholar 

  107. Shi X, Chen X, Chen X, Zhou S, Lou S, Wang Y, Yuan L (2013) PVP assisted hydrothermal synthesis of BiOBr hierarchical nanostructures and high photocatalytic capacity. Chem Eng J 222:120–127

    CAS  Google Scholar 

  108. Weng S, Pei Z, Zheng Z, Hu J, Liu P (2013) Exciton-free, nonsensitized degradation of 2-naphthol by facet-dependent BiOCl under visible light: novel evidence of surface-state photocatalysis. ACS Appl Mater Interfaces 5(23):12380–12386

    CAS  PubMed  Google Scholar 

  109. Zhong J, Zhao Y, Ding L, Ji H, Ma W, Chen C, Zhao J (2019) Opposite photocatalytic oxidation behaviors of BiOCl and TiO2: direct hole transfer vs. indirect OH oxidation. Appl Catal B 241:514–520

    CAS  Google Scholar 

  110. Zhang X, Wang X-B, Wang L-W, Wang W-K, Long LL, Li W-W, Yu H-Q (2014) Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing 001 facets. ACS Appl Mater Interfaces 6(10):7766–7772

    CAS  PubMed  Google Scholar 

  111. Singh P, Sonu RP, Sudhaik A, Shandilya P, Thakur P, Agarwal S, Gupta VK (2019) Enhanced photocatalytic activity and stability of AgBr/BiOBr/graphene heterojunction for phenol degradation under visible light. J Saudi Chem Soc 23(5):586–599. https://doi.org/10.1016/j.jscs.2018.10.005

    Article  CAS  Google Scholar 

  112. Liu C, Xu Q, Zhang Q, Zhu Y, Ji M, Tong Z, Hou W, Zhang Y, Xu J (2018) Layered BiOBr/Ti3C2 MXene composite with improved visible-light photocatalytic activity. J Mater Sci 54(3):2458–2471. https://doi.org/10.1007/s10853-018-2990-0

    Article  CAS  Google Scholar 

  113. Sun M, Zhang W, Sun Y, Zhang Y, Dong F (2019) Synergistic integration of metallic Bi and defects on BiOI: enhanced photocatalytic NO removal and conversion pathway. Chin J Catal 40(6):826–836. https://doi.org/10.1016/s1872-2067(18)63195-x

    Article  CAS  Google Scholar 

  114. Zhao H, Liu X, Dong Y, Xia Y, Wang H (2019) A special synthesis of BiOCl photocatalyst for efficient pollutants removal: new insight into the band structure regulation and molecular oxygen activation. Appl Catal B 256:117872

    CAS  Google Scholar 

  115. Wang S, Guan Y, Wang L, Zhao W, He H, Xiao J, Yang S, Sun C (2015) Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption–photocatalysis for efficient treatment of dye wastewater. Appl Catal B 168:448–457

    Google Scholar 

  116. Xu H, Yan J, Xu Y, Song Y, Li H, Xia J, Huang C, Wan H (2013) Novel visible-light-driven AgX/graphite-like C3N4 (X= Br, I) hybrid materials with synergistic photocatalytic activity. Appl Catal B 129:182–193

    CAS  Google Scholar 

  117. Dong F, Li Q, Sun Y, Ho W-K (2014) Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis. ACS Catal 4(12):4341–4350

    CAS  Google Scholar 

  118. Di J, Xia J, Ji M, Wang B, Yin S, Zhang Q, Chen Z, Li H (2015) Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight. ACS Appl Mater Interfaces 7(36):20111–20123

    CAS  PubMed  Google Scholar 

  119. Xia J, Di J, Li H, Xu H, Li H, Guo S (2016) Ionic liquid-induced strategy for carbon quantum dots/BiOX (X= Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis. Appl Catal B 181:260–269

    CAS  Google Scholar 

  120. Duan Z-G, Zhao Z-Y, Shi Q-N (2015) Modification mechanism of praseodymium doping for the photocatalytic performance of TiO2: a combined experimental and theoretical study. Phys Chem Chem Phys 17(29):19087–19095

    CAS  PubMed  Google Scholar 

  121. Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114(19):9824–9852

    CAS  PubMed  Google Scholar 

  122. Yu C, Cao F, Li G, Wei R, Jimmy CY, Jin R, Fan Q, Wang C (2013) Novel noble metal (Rh, Pd, Pt)/BiOX (Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye degradation. Sep Purif Technol 120:110–122

    CAS  Google Scholar 

  123. Jia X, Cao J, Lin H, Zhang M, Guo X, Chen S (2017) Transforming type-I to type-II heterostructure photocatalyst via energy band engineering: a case study of I-BiOCl/I-BiOBr. Appl Catal B 204:505–514

    CAS  Google Scholar 

  124. Jiang G, Wang X, Wei Z, Li X, Xi X, Hu R, Tang B, Wang R, Wang S, Wang T (2013) Photocatalytic properties of hierarchical structures based on Fe-doped BiOBr hollow microspheres. J Mater Chem A 1(7):2406–2410

    CAS  Google Scholar 

  125. Weng S, Chen B, Xie L, Zheng Z, Liu P (2013) Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity. J Mater Chem A 1(9):3068–3075

    CAS  Google Scholar 

  126. Zhang K, Liang J, Wang S, Liu J, Ren K, Zheng X, Luo H, Peng Y, Zou X, Bo X (2012) BiOCl sub-microcrystals induced by citric acid and their high photocatalytic activities. Cryst Growth Des 12(2):793–803

    CAS  Google Scholar 

  127. Ding L, Wei R, Chen H, Hu J, Li J (2015) Controllable synthesis of highly active BiOCl hierarchical microsphere self-assembled by nanosheets with tunable thickness. Appl Catal B 172:91–99

    Google Scholar 

  128. Cheng H, Huang B, Dai Y (2014) Engineering BiOX (X= Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6(4):2009–2026

    CAS  PubMed  Google Scholar 

  129. Zhao K, Zhang L, Wang J, Li Q, He W, Yin JJ (2013) Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J Am Chem Soc 135(42):15750–15753

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by Jilin University Graduate Innovation Project (2016206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1063 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhang, F., Li, C. et al. Morphology and Environmental Applications of Bismuth Compound Nano-Photocatalytic Materials: A Review. Top Catal 64, 780–796 (2021). https://doi.org/10.1007/s11244-021-01441-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01441-0

Keywords

Navigation