Skip to main content
Log in

Impact of Zr on the Activity of MoO3/Ce1−xZrxO2 Catalysts for Sulfur-Resistant Methanation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this work, ZrO2-modified MoO3/CeO2 catalysts were prepared and applied in the sulfur-resistant methanation reaction. Roles of Zr on the structural characteristics and the catalytic activity were systematically investigated. The introduction of ZrO2 into CeO2 matrix, which caused the presence of ZrO2/CeO2 solid solution, contributed to the generation of a large amount of Ce3+ species accompanied by defect oxygen under reductive conditions. The defect oxygen can significantly enhance oxygen mobility of the support, which leads to the well dispersed active MoS2 evolving from the easier reduction of Mo-species by increased reducible Ce3+. Among all studied catalysts, MoO3/Ce0.8Zr0.2O2 exhibited the best catalytic performance because of the highly dispersed MoS2 and surface Ce3+ species, two key active sites in sulfur-resistant methanation reaction. The concurrence of CO hydrogenation and water–gas shift reaction is also one of the prerequisites to achieve higher catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jiang M, Wang B, Yao Y, Li Z, Ma X, Qin S, Sun Q (2013) Effect of sulfidation temperature on CoO–MoO3/γ-Al2O3 catalyst for sulfur-resistant methanation. Catal Sci Technol 3:2793–2800

    Article  CAS  Google Scholar 

  2. Jiang M, Wang B, Yao Y, Li Z, Ma X, Qin S, Sun Q (2013) A comparative study of CeO2-Al2O3 support prepared with different methods and its application on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation. Appl Surf Sci 285:267–277

    Article  CAS  Google Scholar 

  3. Wang B-W, Yao Y-Q, Liu S-H, Hu Z-Y, Li Z-H, Ma X-B (2015) Effects of MoO3 loading and calcination temperature on the catalytic performance of MoO3/CeO2 toward sulfur-resistant methanation. Fuel Process Technol 138:263–270

    Article  CAS  Google Scholar 

  4. Li Z, Tian Y, He J, Wang B, Ma X (2014) High CO methanation activity on zirconia-supported molybdenum sulfide catalyst. J Energy Chem 23:625–632

    Article  CAS  Google Scholar 

  5. Wang B, Ding G, Shang Y, Lv J, Wang H, Wang E, Li Z, Ma X, Qin S, Sun Q (2012) Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3. Appl Catal A 431–432:144–150

    Article  CAS  Google Scholar 

  6. Wang B, Yao Y, Jiang M, Li Z, Ma X, Qin S, Sun Q (2014) Effect of cobalt and its adding sequence on the catalytic performance of MoO3/Al2O3 toward sulfur-resistant methanation. J Energy Chem 23:35–42

    Article  CAS  Google Scholar 

  7. Jiang M, Wang B, Yao Y, Wang H, Li Z, Ma X, Qin S, Sun Q (2013) The role of the distribution of Ce species on MoO3/CeO2–Al2O3 catalysts in sulfur-resistant methanation. Catal Commun 35:32–35

    Article  CAS  Google Scholar 

  8. Jiang M, Wang B, Lv J, Wang H, Li Z, Ma X, Qin S, Sun Q (2013) Effect of sulfidation temperature on the catalytic activity of MoO3/CeO2–Al2O3 toward sulfur-resistant methanation. Appl Catal A 466:224–232

    Article  CAS  Google Scholar 

  9. Daturi M, Binet C, Lavalley J-C, Galtayries A, Sporken R (1999) Surface investigation on CeZr1-O2 compounds. Phys Chem Chem Phys 1:5717–5724

    Article  CAS  Google Scholar 

  10. Fornasiero P, Balducci G, Di Monte R, Kašpar J, Sergo V, Gubitosa G, Ferrero A, Graziani M (1996) Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2. J Catal 164:173–183

    Article  CAS  Google Scholar 

  11. Hori CE, Permana H, Ng KYS, Brenner A, More K, Rahmoeller KM, Belton D (1998) Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system. Appl Catal B 16:105–117

    Article  CAS  Google Scholar 

  12. Jeong D-W, Na H-S, Shim J-O, Jang W-J, Roh H-S (2015) A crucial role for the CeO2–ZrO2 support for the low temperature water gas shift reaction over Cu–CeO2–ZrO2 catalysts. Catal Sci Technol 5:3706–3713

    Article  CAS  Google Scholar 

  13. Murota T, Hasegawa T, Aozasa S, Matsui H, Motoyama M (1993) Production method of cerium oxide with high storage capacity of oxygen and its mechanism. J Alloys Compd 193:298–299

    Article  CAS  Google Scholar 

  14. Murrell LL, Tauster SJ (1991) Sols as precursors to transitional aluminas and these aluminas as host supports for CeO2 and ZrO2 micro domains. In: Crucq A (ed) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 547–555

    Google Scholar 

  15. Liu Z, Xu Y, Cheng J, Wang W, Wang B, Li Z, Ma X (2018) Comparative study on cubic and tetragonal CexZr1-xO2 supported MoO3-catalysts for sulfur-resistant methanation. Appl Surf Sci 433:730–738

    Article  CAS  Google Scholar 

  16. Potdar HS, Jeong D-W, Kim K-S, Roh H-S (2011) Synthesis of highly active nano-sized Pt/CeO2 catalyst via a cerium hydroxy carbonate precursor for water gas shift reaction. Catal Lett 141:1268–1274

    Article  CAS  Google Scholar 

  17. Yashima M, Morimoto K, Ishizawa N, Yoshimura M (1993) Zirconia-ceria solid solution synthesis and the temperature–time–transformation diagram for the 1:1 composition. J Am Ceram Soc 76:1745–1750

    Article  CAS  Google Scholar 

  18. Yashima M, Morimoto K, Ishizawa N, Yoshimura M (1993) Diffusionless tetragonal-cubic transformation temperature in zirconia-ceria solid solutions. J Am Ceram Soc 76:2865–2868

    Article  CAS  Google Scholar 

  19. Fuentes RO, Baker RT (2009) Synthesis of nanocrystalline CeO2−ZrO2 solid solutions by a citrate complexation route: a thermochemical and structural study. J Phys Chem C 113:914–924

    Article  CAS  Google Scholar 

  20. Deng Q-F, Ren T-Z, Agula B, Liu Y, Yuan Z-Y (2014) Mesoporous CexZr1−xO2 solid solutions supported CuO nanocatalysts for toluene total oxidation. J Ind Eng Chem 20:3303–3312

    Article  CAS  Google Scholar 

  21. Larese C, López Granados M, Mariscal R, Fierro JLG, Lambrou PS, Efstathiou AM (2005) The effect of calcination temperature on the oxygen storage and release properties of CeO2 and Ce–Zr–O metal oxides modified by phosphorus incorporation. Appl Catal B 59:13–25

    Article  CAS  Google Scholar 

  22. Kuznetsova TG, Sadykov VA (2008) Specific features of the defect structure of metastable nanodisperse ceria, zirconia, and related materials. Kinet Catal 49:840–858

    Article  CAS  Google Scholar 

  23. Samaranch B, Ramírez de la Piscina P, Clet G, Houalla M, Homs N (2006) Study of the structure, acidic, and catalytic properties of binary mixed-oxide MoO3−ZrO2 systems. Chem Mater 18:1581–1586

    Article  CAS  Google Scholar 

  24. Damyanova S, Centeno MA, Petrov L, Grange P (2001) Fourier transform infrared spectroscopic study of surface acidity by pyridine adsorption on Mo/ZrO2–SiO2(Al2O3) catalysts. Spectrochim Acta A 57:2495–2501

    Article  CAS  Google Scholar 

  25. Chen K, Xie S, Iglesia E, Bell AT (2000) Structure and properties of zirconia-supported molybdenum oxide catalysts for oxidative dehydrogenation of propane. J Catal 189:421–430

    Article  CAS  Google Scholar 

  26. van Haandel L, Bremmer GM, Hensen EJM, Weber T (2016) Influence of sulfiding agent and pressure on structure and performance of CoMo/Al2O3 hydrodesulfurization catalysts. J Catal 342:27–39

    Article  CAS  Google Scholar 

  27. Díaz-García L, Santes V, Viveros-García T, Sánchez-Trujillo A, Ramírez-Salgado J, Ornelas C, Rodríguez-Castellón E (2017) Electronic binding of sulfur sites into Al2O3-ZrO2 supports for NiMoS configuration and their application for hydrodesulfurization. Catal Today 282:230–239

    Article  CAS  Google Scholar 

  28. Zhu P, Li J, Zuo S, Zhou R (2008) Preferential oxidation properties of CO in excess hydrogen over CuO-CeO2 catalyst prepared by hydrothermal method. Appl Surf Sci 255:2903–2909

    Article  CAS  Google Scholar 

  29. Shan W, Feng Z, Li Z, Zhang J, Shen W, Li C (2004) Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition–precipitation, coprecipitation, and complexation–combustion methods. J Catal 228:206–217

    Article  CAS  Google Scholar 

  30. Reddy BM, Lakshmanan P, Loridant S, Yamada Y, Kobayashi T, López-Cartes C, Rojas TC, Fernández A (2006) Structural characterization and oxidative dehydrogenation activity of V2O5/CexZr1-xO2/SiO2 catalysts. J Phys Chem B 110:9140–9147

    Article  CAS  PubMed  Google Scholar 

  31. Liu L, Yao Z, Liu B, Dong L (2010) Correlation of structural characteristics with catalytic performance of CuO/CexZr1−xO2 catalysts for NO reduction by CO. J Catal 275:45–60

    Article  CAS  Google Scholar 

  32. Si R, Zhang Y-W, Li S-J, Lin B-X, Yan C-H (2004) Urea-based hydrothermally derived homogeneous nanostructured Ce1-xZrxO2 (x = 0–0.8) solid solutions: a strong correlation between oxygen storage capacity and lattice strain. J Phys Chem B 108:12481–12488

    Article  CAS  Google Scholar 

  33. Liu Y, Zhai Y, Li Y (2004) Preparation of Ce-Zr-O solid solution. React Kinet Catal Lett 82:295–302

    Article  CAS  Google Scholar 

  34. Jeong D-W, Jang W-J, Na H-S, Shim J-O, Jha A, Roh H-S (2015) Comparative study on cubic and tetragonal Cu–CeO2–ZrO2 catalysts for water gas shift reaction. J Ind Eng Chem 27:35–39

    Article  CAS  Google Scholar 

  35. Jeong D-W, Potdar HS, Shim J-O, Jang W-J, Roh H-S (2013) H2 production from a single stage water–gas shift reaction over Pt/CeO2, Pt/ZrO2, and Pt/Ce(1–x)Zr(x)O2 catalysts. Int J Hydrog Energy 38:4502–4507

    Article  CAS  Google Scholar 

  36. Wang B, Chi C, Xu M, Wang C, Meng D (2017) Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge. Chem Eng J 322:679–692

    Article  CAS  Google Scholar 

  37. Azalim S, Brahmi R, Agunaou M, Beaurain A, Giraudon JM, Lamonier JF (2013) Washcoating of cordierite honeycomb with Ce–Zr–Mn mixed oxides for VOC catalytic oxidation. Chem Eng J 223:536–546

    Article  CAS  Google Scholar 

  38. Wang W, Qu Z, Song L, Fu Q (2020) Probing into the multifunctional role of copper species and reaction pathway on copper-cerium-zirconium catalysts for CO2 hydrogenation to methanol using high pressure in situ DRIFTS. J Catal 382:129–140

    Article  CAS  Google Scholar 

  39. Fornasiero P, Dimonte R, Rao GR, Kaspar J, Meriani S, Trovarelli A, Graziani M (1995) Rh-loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural-properties. J Catal 151:168–177

    Article  CAS  Google Scholar 

  40. Trovarelli A, Zamar F, Llorca J, Leitenburg CD, Dolcetti G, Kiss JT (1997) Nanophase fluorite-structured CeO2–zro2catalysts prepared by high-energy mechanical milling. J Catal 169:490–502

    Article  CAS  Google Scholar 

  41. Ge H, Li X, Wang J, Qin Z, LÜ Z, Yang Y (2008) Activation and hydrodesulfurization activity of MoO3/Al2O3 catalyst presulfided by ammonium thiosulfate. Chin J Catal 29:921–927

    Article  CAS  Google Scholar 

  42. Li Z, He J, Wang H, Wang B, Ma X (2015) Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3. Front Chem Sci Eng 9:33–39

    Article  CAS  Google Scholar 

  43. Paier J, Penschke C, Sauer J (2013) Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem Rev 113:3949–3985

    Article  CAS  PubMed  Google Scholar 

  44. Tang W, Hu Z, Wang M, Stucky GD, Metiu H, McFarland EW (2010) Methane complete and partial oxidation catalyzed by Pt-doped CeO2. J Catal 273:125–137

    Article  CAS  Google Scholar 

  45. Liu Z, Su H, Li J, Li Y (2015) Novel MoO3/CeO2–ZrO2 catalyst for the selective catalytic reduction of NOx by NH3. Catal Commun 65:51–54

    Article  CAS  Google Scholar 

  46. Meng D, Wang B, Liu Z, Wang W, Li Z, Ma X (2017) Effects of CeO2 preparation methods on the catalytic performance of MoO3/CeO2 toward sulfur-resistant methanation. J Energy Chem 26:368–372

    Article  Google Scholar 

  47. Gutiérrez-Ortiz JI, de Rivas B, López-Fonseca R, González-Velasco JR (2004) Combustion of aliphatic C2 chlorohydrocarbons over ceria–zirconia mixed oxides catalysts. Appl Catal A 269:147–155

    Article  CAS  Google Scholar 

  48. Kambolis A, Matralis H, Trovarelli A, Papadopoulou C (2010) Ni/CeO2-ZrO2 catalysts for the dry reforming of methane. Appl Catal A 377:16–26

    Article  CAS  Google Scholar 

  49. Sun C, Sun J, Xiao G, Zhang H, Qiu X, Li H, Chen L (2006) Mesoscale organization of nearly monodisperse flowerlike ceria microspheres. J Phys Chem B 110:13445–13452

    Article  CAS  PubMed  Google Scholar 

  50. Li S, Hao Q, Zhao R, Liu D, Duan H, Dou B (2016) Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts. Chem Eng J 285:536–543

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the National High Technology Research and Development Program of China (2015AA050504) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujun Zhao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, W., Peng, B. et al. Impact of Zr on the Activity of MoO3/Ce1−xZrxO2 Catalysts for Sulfur-Resistant Methanation. Top Catal 64, 582–590 (2021). https://doi.org/10.1007/s11244-021-01429-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01429-w

Keywords

Navigation