Skip to main content
Log in

Applications of Neutron Scattering in Technical Catalysis: Characterisation of Hydrogenous Species on/in Unsupported and Supported Palladium

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Recent results from inelastic neutron scattering (INS) measurements are reviewed that show the synergy between research on hydrogen adsorption/absorption on/in catalysts and chemical engineering. The proton dynamics of catalysts for large scale reactor technology are compared. The focus is the identification and quantification of hydrogenous species on, and inside, fresh, hydrogenated and dehydrogenated palladium black and supported palladium catalysts of different particle size, type of support and, therefore, morphology. INS studies of in-situ hydrogenation/ dehydrogenation of catalysts of 25–60 g size per sample are carried out in stainless steel cans as a function of varying hydrogen pressures. Differences in hysteresis effects in retaining hydrogen inside the catalyst in desorption from palladium hydrides and hydrogen bonding in adsorption sites in varying particle morphologies on different supports were evaluated. This aids the understanding of hydrogen/palladium interactions in catalytic processes with varying local hydrogen partial pressure, e.g. in loop reactors. The importance of the measured on-top Pd–H site in catalytic hydrogenation reactions is discussed together with previous INS results on the degree of deactivation of a technical catalyst by molecular blocking of the on-top site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced from [12]

Fig. 3

Top part reproduced from [12] under a Creative Commons Attribution Unported License 3.0 (CC BY)

Fig. 4

Reproduced from [13] under a Creative Commons Attribution Unported License 3.0 (CC BY)

Fig. 5

Reproduced from [13] under a Creative Commons Attribution Unported License 3.0 (CC BY)

Fig. 6

Reproduced from [13] under a Creative Commons Attribution Unported License 3.0 (CC BY)

Fig. 7

Reproduced from [13] under a Creative Commons Attribution Unported License 3.0 (CC BY)

Fig. 8

Top and middle: reproduced from [43] with permission from Elsevier, bottom: reproduced from [41] with permission from The Royal Society of Chemistry

Similar content being viewed by others

References

  1. Albers PW, Lennon D, Parker SF (2017) Catalysis. In: Fernandez-Alonso F, Price DL (eds) Experimental methods in the physical sciences, neutron scattering: applications in chemistry, materials science, and biology, vol 49. Academic Press, Oxford, pp 281–350

    Google Scholar 

  2. Ruth K, Albers P (2018) Materials for solid catalysts. In: Warlimont H, Martienssen W (eds) Springer handbook of materials data, 2nd edn. Springer, Cham, pp 935–955

    Chapter  Google Scholar 

  3. Richter D, Hempelmann R, Bowman RC Jr (1992) Dynamics of hydrogen in intermetallic compounds. In: Schlapbach L (ed) Hydrogen in intermetallic compounds ii, surface and dynamic properties, applications, topics in applied physics, vol 67. Springer, Berlin, pp 97–164

    Google Scholar 

  4. Ross DK (1997) Neutron scattering studies of metal-hydrogen systems. In: Wipf H (ed) Hydrogen in metals III: properties and applications topics in applied physics, vol 73. Springer, Berlin, pp 153–214

    Chapter  Google Scholar 

  5. Celli M, Colognesi D, Zoppi M (2009) Hydrogen and hydrogen-storage materials. In: Liang L, Rinaldi R, Schober H (eds) Neutron applications in earth, energy and environmental sciences. Springer, Cham, pp 417–438

    Google Scholar 

  6. Ross DK, Roach DL (2016) Inelastic and quasi-elastic neutron scattering. In: Fritzsche H, Huot J, Fruchard D (eds) Neutron scattering and other nuclear techniques for hydrogen in materials. Springer, Cham, pp 245–276

    Chapter  Google Scholar 

  7. Drexel W, Murani A, Tocchetti D, Kley W, Sosnowska I, Ross DK (1976) The motions of hydrogen impurities in α-palladium-hydride. J Phys Chem Solids 37:1135–1139

    Article  CAS  Google Scholar 

  8. Ross DK, Martin PF, Oates WA, Khoda Bakhsh R (1979) Inelastic neutron scattering measurements of optical vibration frequency distributions in hydrogen-metal systems. Z Phys Chem 114:221–230

    Article  CAS  Google Scholar 

  9. Wicke E, Brodowski H (1978) Hydrogen in palladium and palladium alloys. In: Alefeld G, Völkl J (eds) Hydrogen in metals II: application-oriented properties, topics in applied physics, vol 29. Springer, Berlin, pp 73–155

    Chapter  Google Scholar 

  10. Parker SF, Lennon D, Albers PW (2011) Vibrational spectroscopy with neutrons—new directions. Appl Spectrosc 65:1325–1341

    Article  CAS  Google Scholar 

  11. Parker SF, Ramirez-Cuesta AJ, Albers PW, Lennon D (2014) The use of direct geometry spectrometers in molecular spectroscopy. DMMII, J Phys Conf Ser 554:012004

    Article  Google Scholar 

  12. Parker SF, Adroja D, Jimenez-Ruiz M, Tischer M, Möbus K, Wieland SD, Albers P (2016) Characterisation of the surface of freshly prepared precious metal catalysts. Phys Chem Chem Phys 18:17196–17201

    Article  CAS  PubMed  Google Scholar 

  13. Parker SF, Walker HC, Callear SK, Grünewald E, Petzold T, Wolf D, Möbus K, Adam J, Wieland SD, Jiménez-Ruiz M, Albers PW (2019) The effect of particle size, morphology and support on the formation of palladium hydride in commercial catalysts. Chem Sci 10:480–489

    Article  CAS  PubMed  Google Scholar 

  14. Kosak JR (1996) Precious metal synergism in catalytic hydrogenation. In: Malz RE Jr. (ed) Catalysis of organic reactions (chemical industries). Dekker, New York, pp 31–41

    Google Scholar 

  15. Booth G (2007) Nitro compounds, aromatic. Ullmann’s encyclopedia of industrial chemistry, vol 24, 7th edn. Wiley-VCH, Weinheim, pp 301–350

    Google Scholar 

  16. Randall D, Lee S (2002) The polyurethanes book. Wiley, New York

    Google Scholar 

  17. Parker GL, Smith LK, Baxendale IR (2016) (2016) Development of the industrial synthesis of vitamin A. Tetrahedron 72:1645–1652

    Article  CAS  Google Scholar 

  18. Weigert W (1978) Wasserstoffperoxid und seine Derivate: Chemie u. Anwendungen. Hüthig-Verlag, Heidelberg

    Google Scholar 

  19. Jones CW (1999) Applications of hydrogen peroxide and derivatives. RSC clean technology monographs. Royal Society of Chemistry, Cambridge

    Google Scholar 

  20. Chen Q (2008) Development of an anthraquinone process for the production of hydrogen peroxide in a trickle bed reactor—from bench scale to industrial scale. Chem Eng Proc: Proc Intensification 47:787–792

    Article  CAS  Google Scholar 

  21. Goor G, Glenneberg J, Jacobi S (2012) Hydrogen peroxide. Ullmanns’s encyclopedia of industrial chemistry, vol 18, 7th edn. Wiley-VCH, Weinheim, pp 393–427

    Google Scholar 

  22. Duveen RF (1998) High performance gas-liquid reaction technology. HH Technology Corp., Sissach, Switzerland, http://www.hhcorp.net/PDF/Rene_High_Performance.pdf. Accessed 28 Jan 2021

  23. Warmeling H, Behr A, Vorholt AJ (2016) Jet loop reactors as a versatile reactor set up—intensifying catalytic reactions: a review. Chem Eng Sci 140:229–248

    Article  CAS  Google Scholar 

  24. Wood J (2016) Three-phase catalytic reactors for hydrogenation and oxidation reactions. Phys Sci Rev 1:20150019

    Google Scholar 

  25. Satterfield CN (1975) Trickle-bed reactors. AIChE J 21:209–228

    Article  CAS  Google Scholar 

  26. Gelder EA, Jackson SD, Lok CM (2002) A study of nitrobenzene hydrogenation over palladium/carbon catalysts. Catal Lett 84:205–208

    Article  CAS  Google Scholar 

  27. Pundt A, Suleiman M, Bähtz C, Reetz MT, Kirchheim R, Jisrawi NM (2004) hydrogen and Pd-clusters. Mat Sci Eng B 108:19–23

    Article  CAS  Google Scholar 

  28. Pundt A, Sachs C, Winter M, Reetz MT, Frisch D, Kirchheim R (1999) Hydrogen sorption in elastically soft stabilized Pd-clusters. J Alloys Compd 293–295:480–483

    Article  Google Scholar 

  29. Sachs C, Pundt A, Kirchheim R, Winter M, Reetz MT, Frisch D (2001) Solubility of hydrogen in single-sized palladium clusters. Phys Rev B 64:075408

    Article  CAS  Google Scholar 

  30. Suleiman M, Jisrawi NM, Dankert O, Reetz MT, Bähtz C, Kirchheim R (2003) Phase transition and lattice expansion during hydrogen loading of nanometer sized palladium clusters. J Alloys Compd 356(357):644–648

    Article  CAS  Google Scholar 

  31. Robinson IK (2015) Computational studies of hydrogen in palladium. PhD Thesis, University of Salford

  32. Suzana A, Wu L, Assafa T, Williams B, Harder R, Cha W, Kuo C-H, Tsung C-K, Robinson I (2020) Structure of a single nanoparticle and its dynamics during the hydride phase transformation. Brookhaven National Lab, Upton. https://doi.org/10.21203/rs.3.rs-65592/v1

    Book  Google Scholar 

  33. Houari A, Matar SF, Eyert V (2014) Electronic structure and crystal phase stability of palladium hydrides. J Appl Phys 116:173706

    Article  CAS  Google Scholar 

  34. Briggs D, Seah MP (1990) Practical surface analysis. Auger and X-ray photoelectron spectroscopy, vol 1, 2nd edn. Wiley, Chichester, pp 613–634 (Literature cited therein)

    Google Scholar 

  35. Parker SF, Refson K, Hannon AC, Barney ER, Robertson SJ, Albers P (2010) Characterisation of hydrous palladium oxide: Implications for low temperature carbon monoxide oxidation. J Phys Chem C 114:14164–14171

    Article  CAS  Google Scholar 

  36. Albers PW, Möbus K, Wieland SD, Parker SF (2015) The fine structure of Pearlman’s catalyst. Phys Chem Chem Phys 17:5274–5278

    Article  CAS  PubMed  Google Scholar 

  37. Borodziński A, Bond GC (2006) Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effects of changes to catalyst during reaction. Catal Rev 48:91–144

    Article  CAS  Google Scholar 

  38. Parker SF, Bowron DT, Imberti S, Soper AK, Refson K, Lox ES, Lopez M, Albers P (2010) Structure determination of adsorbed hydrogen on a real catalyst. Chem Commun 46:2959–2961

    Article  CAS  Google Scholar 

  39. Loewert M, Serrer M-A, Carambia T, Stehle M, Zimina A, Kalz KF, Lichtenberg H, Saraçi E, Pfeifer P, Grunwaldt JD (2020) Bridging the gap between industry and synchrotron: an operando study at 30 bar over 300 h during Fischer-Tropsch synthesis. React Chem Eng 5:1071–1082

    Article  CAS  Google Scholar 

  40. Davidson AL, Lennon D, Webb PB, Albers PW, Berweiler M, Poss R, Roos M, Reinsdorf A, Wolf D, Parker SF (2021) The characterization of hydrogen on nickel and cobalt catalysts. Topics Catal (accepted for publication)

  41. Albers P, Angert H, Prescher G, Seibold K, Parker SF (1999) Catalyst poisoning by methyl groups. Chem. Commun. 17:1619–1620

    Article  Google Scholar 

  42. Albers P, Pietsch J, Parker SF (2001) Poisoning and deactivation of palladium catalysts. J Mol Catal A 173:275–286

    Article  CAS  Google Scholar 

  43. Albers PW, Parker SF (2007) Inelastic incoherent neutron scattering in catalysis research. Adv Catal 51:99–132

    CAS  Google Scholar 

  44. Schulz H (2003) major and minor reactions in Fischer-Tropsch synthesis on cobalt catalysts. Top Catal 26:73–85

    Article  CAS  Google Scholar 

  45. Paul JF, Sautet P (1998) Chemisorption and transformation of CHx fragments (x=0-3) on a Pd(111) surface: a periodic density functional study. J Phys Chem B 102:1578–1585

    Article  CAS  Google Scholar 

  46. Kellner CS, Bell AT (1981) The kinetics and mechanism of carbon monoxide hydrogenation over alumina supported ruthenium. J Catal 70:418–432

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The STFC Rutherford Appleton Laboratory is thanked for access to the neutron beam facilities of TOSCA, MAPS, MERLIN and SANDALS. The Institut Max von Laue-Paul Langevin (ILL), Grenoble, France is thanked for access to the high flux reactor facilities (IN1 Lagrange).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stewart F. Parker.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Research Involving Human and/or Animal Participants

There were no human or animal subjects involved in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albers, P.W., Parker, S.F. Applications of Neutron Scattering in Technical Catalysis: Characterisation of Hydrogenous Species on/in Unsupported and Supported Palladium. Top Catal 64, 603–613 (2021). https://doi.org/10.1007/s11244-021-01424-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01424-1

Keywords

Navigation