Skip to main content
Log in

Hydrogen Vibration in Hydrogen Storage Materials Investigated by Inelastic Neutron Scattering

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Hydrides are promising hydrogen storage materials owing to their higher gravimetric and volumetric hydrogen densities compared to compressed hydrogen gas and liquid hydrogen. Hydrogen is absorbed by different compounds (formation reaction of hydride) and thus exhibits different states—elemental hydrogen (H0), hydride ion (H), and covalently bonded hydrogen (Hcov.)—in hydrides. The absorbed hydrogen is released as hydrogen gas (decomposition reaction of hydride). Therefore, it is important to understand hydride formation and decomposition based on the nature of chemical bonding of hydrogen (hydrogen states) in hydrides. Although it is difficult to directly observe hydrogen states, inelastic neutron scattering (INS), a powerful and useful technique, can be employed for this purpose as hydrogen vibrations in hydrides depend on its state. Herein, we provide an overview of INS studies of hydrogen vibrations in representative hydrides which are potential hydrogen storage materials. In particular, mode assignments focused on hydrogen states, local atomic arrangements around hydrogen atoms, hydrogen release reactions, and hydride formation processes based on observed hydrogen vibrations through INS are reviewed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reproduced from ref. [62] with permission from the Royal Society of Chemistry

Fig. 7

Similar content being viewed by others

References

  1. Schlapbach L, Züttel A (2001) Nature 414:353–358

    Article  CAS  PubMed  Google Scholar 

  2. Züttel A (2003) Mater Today 6:24–33

    Article  Google Scholar 

  3. Lartigue C, Le Bail A, Percheron-Guegan A (1987) J Less Common Met 129:65–76

    Article  CAS  Google Scholar 

  4. Bortz M, Bertheville B, Böttger G, Yvon K (1999) J Alloys Compd 287:L4–L6

    Article  CAS  Google Scholar 

  5. Hauback BC, Brinks HW, Jensen CM, Murphy K, Maeland AJ (2003) J Alloys Compd 358:142–145

    Article  CAS  Google Scholar 

  6. Takagi S, Orimo S (2015) Scr Mater 109:1–5

    Article  CAS  Google Scholar 

  7. Mitchell PCH, Parker SF, Ramirez-Cuesta AJ, Tomkinson J (2005) Vibrational spectroscopy with neutrons, with applications in chemistry, biology, materials science and catalysis. Wolrd Scientific, London

    Book  Google Scholar 

  8. Parker SF (2010) Coord Chem Rev 254:215–234

    Article  CAS  Google Scholar 

  9. Parker SF, Ramirez-Cuesta AJ, Daemen LL (2018) Spectroshim Acta A 190:518–523

    Article  CAS  Google Scholar 

  10. Xue Z-L, Ramirez-Cuesta AJ, Brown CM, Calder S, Cao H, Chakoumakos BC, Daemen LL, Huq A, Kolesnikov A, Mamontov E, Podlesnyak AA, Wang X (2019) Neutron instruments for research in coordination chemistry: neutron instruments for research in coordination chemistry. Eur J Inorg Chem 8:1065–1089

    Article  CAS  Google Scholar 

  11. Sears VF (1992) Neutron News 3:29–37

    Article  Google Scholar 

  12. Rush JJ, Flotow HE (1968) J Chem Phys 48:3795–3804

    Article  CAS  Google Scholar 

  13. Hempelmann R, Richter D, Hartmann O, Karlsson E, Wäppling R (1989) J Chem Phys 90:1935–1949

    Article  CAS  Google Scholar 

  14. Ueda T, Hayashi S, Nakai Y, Ikeda S (1995) Phys Rev B 51:5725–5731

    Article  CAS  Google Scholar 

  15. Skripov AV, Natter H, Hempelmann R (2001) Solid State Commun 120:265–268

    Article  CAS  Google Scholar 

  16. Skripov AV, Hempelmann R (2006) Solid State Commun 140:435–438

    Article  CAS  Google Scholar 

  17. Callear SK, Ramirez-Cuesta AJ, Kamazawa K, Towata S, Noritake T, Parker SF, Jones MO, Sugiyama J, Ishikiriyama M, David WI (2014) Phys Chem Chem Phys 16:16563–16572

    Article  CAS  PubMed  Google Scholar 

  18. Borgschulte A, Terreni J, Billeter E, Daemen L, Cheng Y, Pandey A, Łodziana Z, Hemley RJ, Ramirez-Cuesta AJ (2020) Proc Natl Acad Sci USA 117:4021–4026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rush JJ, Rowe JM, Maeland AJ (1980) J Phys F Metal Phys 10:L283–L285

    Article  CAS  Google Scholar 

  20. Kaneko H, Kajitani T, Hirabayashi M, Ueno M, Suzuki K (1983) J Less-Common Met 89:237–241

    Article  CAS  Google Scholar 

  21. Suzuki K, Hayashi N, Tomizuka Y, Fukunaga T, Kai K (1984) J Non-Cryst Solids 61–62:637–642

    Article  Google Scholar 

  22. Williams A, Eckert J, Yeh XL, Atzmon M, Samwer K (1984) J Non-Cryst Solids 61–62:643–648

    Article  Google Scholar 

  23. Libowitz GG, Maeland AJ (1984) J Less Common Met 101:131–143

    Article  CAS  Google Scholar 

  24. Bowman RC Jr, Cantrell JS, Samwer K, Tebbe J, Venturini EL, Rush JJ (1988) Phys Rev B 37:8575–8587

    Article  CAS  Google Scholar 

  25. Suzuki K (1983) J Less Common Met 89:183–195

    Article  CAS  Google Scholar 

  26. Parshin PP, Zemlyanov MG, Irodova AV, Sumin VV (1998) Phys Solid State 40:676–678

    Article  Google Scholar 

  27. Chuang AC-P, Liu Y, Udvic TJ, Liaw PK, Yu G-P, Huang J-H (2011) Phys Rev B 83(17):174206

    Article  CAS  Google Scholar 

  28. Switendick AC (1979) Z Phys Chem 117:89–112

    Article  CAS  Google Scholar 

  29. Crivello J-C, Dam B, Denys RV, Dornheim M, Grant DM, Huot J, Jensen TR, de Jongh P, Latroche M, Milanese C, Milčius D, Walker GS, Webb CJ, Zlotea C, Yartys VA (2016) Appl Phys A 122:97

    Article  CAS  Google Scholar 

  30. Zintl E, Harder A (1931) Z Phys Chem B 14:265–284

    Article  Google Scholar 

  31. Wu H, Zhou W, Udovic TJ, Rush JJ, Yildirim T (2007) J Alloys Compd 436:51–55

    Article  CAS  Google Scholar 

  32. Brese NE, O’Keeffe M, von Dreele RB (1990) J Solid State Chem 88:571–576

    Article  CAS  Google Scholar 

  33. Bronger W, Chi CS, Müller P (1987) Z Anorg Allg Chem 545:69–74

    Article  CAS  Google Scholar 

  34. Noritake T, Aoki M, Towata S, Seno Y, Hirose Y, Nishibori E, Takata M, Sakata M (2002) Appl Phys Lett 81:2008

    Article  CAS  Google Scholar 

  35. Ohoba N, Miwa K, Noritake T, Fukumoto A (2004) Phys Rev B 70:035102

    Article  CAS  Google Scholar 

  36. Santisteban JR, Cuello GJ, Dawidowski J, Fainstein A, Peretti HA, Ivanov A, Bermejo FJ (2000) Phys Rev B 62:37–40

    Article  CAS  Google Scholar 

  37. Schimmel HG, Johson MR, Kearley GJ, Ramirez-Cuesta AJ, Huot J, Mulder FM (2004) Mater Sci Eng B 108:38–41

    Article  CAS  Google Scholar 

  38. Colognesi D, Barrera G, Ramirez-Cuesta AJ, Zoppi M (2007) J Alloys Compd 427:18–24

    Article  CAS  Google Scholar 

  39. Inelastic neutron scattering spectra database. http://wwwisis2.isis.rl.ac.uk/INSdatabase/Theindex.asp

  40. Parker SF, Williams KPJ, Bortz M, Yvon K (1997) Inorg Chem 36:5218–5221

    Article  CAS  Google Scholar 

  41. Parker SF, Jayasooriya UA, Sprunt JC, Bortz M, Yvon K (1998) J Chem Soc Faraday Trans 94:2595–2599

    Article  CAS  Google Scholar 

  42. Parker SF, Williams KPJ, Smith T, Bortz M, Bertheville B, Yvon K (2002) Phys Chem Chem Phys 4:1732–1737

    Article  CAS  Google Scholar 

  43. Kyoi D, Sato T, Rönnebro E, Kitamura N, Ueda A, Ito M, Katsuyama S, Hara S, Noréus D, Sakai T (2004) J Alloys Compd 372:213–217

    Article  CAS  Google Scholar 

  44. Kyoi D, Sato T, Rönnebro E, Tsuji Y, Kitamura N, Ueda A, Ito M, Katsuyama S, Hara S, Noréus D, Sakai T (2004) J Alloys Compd 375:253–258

    Article  CAS  Google Scholar 

  45. Sato T, Kyoi D, Rönnebro E, Kitamura N, Sakai T, Noréus D (2006) J Alloys Compd 417:230–234

    Article  CAS  Google Scholar 

  46. Moser D, Bull DJ, Sato T, Noréus D, Kyoi D, Sakai T, Kitamura N, Yusa H, Taniguchi T, Kalisvaart WP, Notten P (2009) J Mater Chem 19:8150–8161

    Article  CAS  Google Scholar 

  47. Bogdanović B, Schwickardi M (1997) J Alloys Compd 253–254:1–9

    Article  Google Scholar 

  48. Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM (2007) Chem Rev 107:4111–4132

    Article  CAS  PubMed  Google Scholar 

  49. Kim S, Oguchi H, Toyama N, Sato T, Takagi S, Otomo T, Dorai A, Kuwata N, Kawamura J, Orimo S (2019) Nat Commun 10:1081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hauback BC (2008) Z Kristallogr 223:636–648

    Article  CAS  Google Scholar 

  51. Temme FP, Waddington TC (1973) J Chem Soc Raraday Trans 2(69):783–790

    Article  Google Scholar 

  52. Tomkinson J, Waddington TC (1975) J Chem Soc Raraday Trans 2(71):2065–2068

    Article  Google Scholar 

  53. Kolesnikov AI, Adams M, Antonov VE, Chirin NA, Goremychkin EA, Inikhova GG, Markushkin YE, Prager M, Sashin IL (1996) J Phys Condens Matter 8:2529–2538

    Article  CAS  Google Scholar 

  54. Íñiguez J, Yildirim T, Udvic TJ, Sulic M, Jensen CM (2004) Phys Rev B 70:060101(R)

    Article  CAS  Google Scholar 

  55. Fu QJ, Ramirez-Cuesta AJ, Tsang SC (2006) J Phys Chem B 110:711–715

    Article  CAS  PubMed  Google Scholar 

  56. Antonov VE, Kolesnikov AI, Markushkin YE, Palnichenko AV, Ren Y, Sakharov MK (2008) J Phys Condens Mater 20:275204

    Article  CAS  Google Scholar 

  57. Borgschlute A, Jain A, Ramirez-Cuesta AJ, Martelli P, Remhof A, Friedrichs O, Gremaud R, Züttel A (2011) Faraday Discuss 151:213–230

    Article  CAS  Google Scholar 

  58. Colognesi D, Giannasi A, Ulivi L, Zoppi M, Ramirez-Cuesta AJ, Roth A, Fichtner M (2011) J Phys Chem A 115:7503–7510

    Article  CAS  PubMed  Google Scholar 

  59. Sato T, Ramiraz-Cuesta AJ, Ikeda K, Orimo S, Yamada K (2011) Inorg Chem 50:8007–8011

    Article  CAS  PubMed  Google Scholar 

  60. Albinati A, Colognesi D, Georgiev PA, Jensen CM, Ramirez-Cuesta AJ (2012) J Alloys Compd 523:108–113

    Article  CAS  Google Scholar 

  61. Tomiyasu K, Sato T, Horigane K, Orimo S, Yamada K (2012) Appl Phys Lett 100:193901

    Article  CAS  Google Scholar 

  62. Sato T, Ramiraz-Cuesta AJ, Daemen L, Cheng Y-Q, Tomiyasu K, Takagi S, Orimo S (2016) Chem Commun 52:11807–11810

    Article  CAS  Google Scholar 

  63. Sato T, Sørby MH, Ikeda K, Sato S, Hauback BC, Orimo S (2009) J Alloys Compd 487:472–478

    Article  CAS  Google Scholar 

  64. Sato T, Takagi S, Deledda S, Hauback BC, Orimo S (2016) Sci Rep 6:23592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee MH, Sankey OF, Bjӧrling T, Moser D, Noréus D, Parker SF, Häussermann U (2007) Inorg Chem 46:6987–6991

    Article  CAS  PubMed  Google Scholar 

  66. Rӧnnebro E, Noréus D, Kadir K, Reiser A, Bogdanovic B (2000) J Alloys Compd 299:101–106

    Article  Google Scholar 

  67. Turley JW, Rinn HW (1969) Inorg Chem 8:18–22

    Article  CAS  Google Scholar 

  68. Zhang QA, Nakamura Y, Oikawa K, Kamiyama T, Akiba E (2002) Inorg Chem 41:6547–6549

    Article  CAS  PubMed  Google Scholar 

  69. Renaudin G, Guénée L, Yvon K (2003) J Alloys Compd 350:145–150

    Article  CAS  Google Scholar 

  70. Zhang QA, Nakamura Y, Oikawa K, Kamiyama T, Akiba E (2003) J Alloys Compd 361:180–186

    Article  CAS  Google Scholar 

  71. Yvon K, Renaudin G, Wei C, Chou M (2005) Phys Rev Lett 94:066403

    Article  CAS  PubMed  Google Scholar 

  72. Parker SF, Taylor JW, Herman H, Rapin J-P, Penin N, Yvon K (2009) J Alloys Compd 470:80–84

    Article  CAS  Google Scholar 

  73. Takagi S, Iijima Y, Sato T, Saitoh H, Ikeda K, Otomo T, Miwa K, Ikeshoji T, Aoki K, Orimo S (2015) Angew Chem Int Ed 54:5650–5653

    Article  CAS  Google Scholar 

  74. Humphries TD, Takagi S, Li G, Matsuo M, Sato T, Sørby MH, Deledda S, Hauback BC, Orimo S (2015) J Alloys Compd 645:S347–S352

    Article  CAS  Google Scholar 

  75. Miwa K, Sato T, Matsuo M, Ikeda K, Otomo T, Deledda S, Hauback BC, Li G, Takagi S, Orimo S (2016) J Phys Chem C 120:5926–5931

    Article  CAS  Google Scholar 

  76. Fahlquist H, Moser D, Noréus D, Refson K, Parker SF (2016) Inorg Chem 55:3576–3582

    Article  CAS  PubMed  Google Scholar 

  77. Saitoh H, Takagi S, Sato T, Iijima Y, Orimo S (2017) Int J Hydrogen Energy 42:22489–22495

    Article  CAS  Google Scholar 

  78. Takagi S, Iijima Y, Sato T, Saitoh H, Ikeda K, Otomo T, Miwa K, Ikeshoji T, Orimo S (2017) Sci Rep 7:44253

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sato T, Daemen LL, Cheng Y, Ramirez-Cuesta AJ, Ikeda K, Aoki T, Otomo T, Orimo S (2019) ChemPhysChem 20:1392–1397

    Article  CAS  PubMed  Google Scholar 

  80. Sato T, Ramirez-Cuesta AJ, Daemen LL, Cheng Y, Orimo S (2018) Inorg Chem 57:867–872

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JST SICORP (JPMJSC 1802) and MEXT/JSPS KAKENHI “Hydrogenomics” (JP18H05513).

Funding

JST SICORP (JPMJSC 1802) MEXT/JSPS KAKENHI “Hydrogenomics” (JP18H05513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toyoto Sato.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, T., Orimo, Si. Hydrogen Vibration in Hydrogen Storage Materials Investigated by Inelastic Neutron Scattering. Top Catal 64, 614–621 (2021). https://doi.org/10.1007/s11244-021-01421-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01421-4

Keywords

Navigation