Skip to main content
Log in

The Challenge of Visualizing the Bridging Hydride at the Active Site and Proton Network of [NiFe]-Hydrogenase by Neutron Crystallography

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

X-ray crystallography is the most powerful tool for obtaining structural information about protein molecules, affording accurate and precise positions for all of the atoms in the protein except for hydrogen. However, hydrogen species play crucial roles in the physiological functions of enzymes, including molecular recognition through hydrogen bonding and catalytic reactions involving proton transfer. Neutron crystallography enables direct identification of the positions of hydrogen species. [NiFe]-hydrogenase from Desulfovibrio vulgaris Miyazaki F is an enzyme that catalyzes the reversible oxidation of molecular hydrogen. It contains a bimetallic Ni–Fe active site for the catalytic reaction and three Fe–S clusters for electron transfer. Previous X-ray structure analyses of the enzyme under various oxidation conditions have revealed that the active site changes its coordination structure depending on the redox state. In the inactive air-oxidized form, an oxygen species was identified between the Ni and Fe atoms, whereas in the active H2-reduced form, subatomic-resolution X-ray structure analysis and single-crystal EPR analyses indicated a hydride ligand between the two metal atoms. However, the assignment of the hydride moiety by X-ray crystallography remains controversial, and the proton transfer pathways in the molecule are still ambiguous. To allow neutron diffraction experiments, large crystals of [NiFe]-hydrogenase were prepared by the vapor diffusion method with the macroseeding technique according to the two-dimensional phase diagram (protein concentration vs. precipitant concentration). Neutron diffraction data were collected at approximately 2.0 Å resolution at cryogenic temperature using a gas-stream cooling system to trap short-lived intermediates in the catalytic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hazemann I, Dauvergne MT, Blakeley MP, Meilleur F, Haertlein M, Van Dorsselaer A, Mitschler A, Myles DAA, Podjarny A (2005) Acta Cryst D61:1413–1417

    CAS  Google Scholar 

  2. Coates L, Cao HB, Chakoumakos BC, Frontzek MD, Hoffmann C, Kovalevsky AY, Liu Y, Meilleur F, dos Santos AM, Myles DAA, Wang XP, Ye F (2018) Rev Sci Instrum 89:092802

    Article  CAS  PubMed  Google Scholar 

  3. Kwon H, Langan PS, Coates L, Raven EL, Moody PCE (2018) Acta Cryst D74:792–799

    Google Scholar 

  4. Blakeley MP, Cianci M, Helliwell JR, Rizkallah PJ (2004) Chem Soc Rev 33:548–557

    Article  CAS  PubMed  Google Scholar 

  5. Vignais PM, Billoud B, Meyer J (2001) FEMS Microbiol Rev 25:455–501

    Article  CAS  PubMed  Google Scholar 

  6. Ogata H, Nishikawa K, Lubitz W (2015) Nature 520:571–574

    Article  PubMed  CAS  Google Scholar 

  7. Vignais PM, Billoud B (2007) Chem Rev 107:4206–4272

    Article  CAS  PubMed  Google Scholar 

  8. Stiebritz MT, Reiher M (2012) Chem Sci 3:1739–1751

    Article  CAS  Google Scholar 

  9. Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, Cook GM, Morales SE (2016) ISME J 10:761–777

    Article  CAS  PubMed  Google Scholar 

  10. Haumann M, Porthun A, Buhrke T, Liebisch P, Meyer-Klaucke W, Friedrich B, Dau H (2003) Biochemistry 42:11004–11015

    Article  CAS  PubMed  Google Scholar 

  11. Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Chem Rev 114:4081–4148

    Article  CAS  PubMed  Google Scholar 

  12. Higuchi Y, Yagi T, Yasuoka N (1997) Structure 5:1671–1680

    Article  CAS  PubMed  Google Scholar 

  13. Higuchi Y, Ogata H, Miki K, Yasuoka N, Yagi T (1999) Structure 7:549–556

    Article  CAS  PubMed  Google Scholar 

  14. Ogata H, Mizoguchi Y, Mizuno N, Miki K, Adachi S, Yasuoka N, Yagi T, Yamauchi O, Hirota S, Higuchi Y (2002) J Am Chem Soc 124:11628–11635

    Article  CAS  PubMed  Google Scholar 

  15. Fernandez VM, Hatchikian EC, Cammack R (1985) BBA-Prot Struct Mol Enzymol 832:69–79

    Article  CAS  Google Scholar 

  16. Volbeda A, Martin L, Cavazza C, Matho M, Faber BW, Roseboom W, Albracht SPJ, Garcin E, Rousset M, Fontecilla-Camps JC (2005) J Biol Inorg Chem 10:239–249

    Article  CAS  PubMed  Google Scholar 

  17. Ogata H, Hirota S, Nakahara A, Komori H, Shibata N, Kato T, Kano K, Higuchi Y (2005) Structure 13:1635–1642

    Article  CAS  PubMed  Google Scholar 

  18. Barondeau DP, Roberts LM, Lindahl PA (1994) J Am Chem Soc 116:3442–3448

    Article  CAS  Google Scholar 

  19. de Lacey AL, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC, Fernandez VM (1997) J Am Chem Soc 119:7181–7189

    Article  Google Scholar 

  20. Lamle SE, Albracht SP, Armstrong FA (2004) J Am Chem Soc 126:14899–14909

    Article  CAS  PubMed  Google Scholar 

  21. Ogata H, Kellers P, Lubitz W (2010) J Mol Biol 402:428–444

    Article  CAS  PubMed  Google Scholar 

  22. Barilone JL, Ogata H, Lubitz W, van Gastel M (2015) Phys Chem Chem Phys 17:16204–16212

    Article  CAS  PubMed  Google Scholar 

  23. Tai H, Nishikawa K, Higuchi Y, Mao ZW, Hirota S (2019) Angew Chem 131:13419–13424

    Article  Google Scholar 

  24. Evans RM, Brooke EJ, Wehlin SA, Nomerotskaia E, Sargent F, Carr SB, Phillips SEV, Armstrong (2016) FA Nat Chem Biol 12:46–50

    Article  CAS  Google Scholar 

  25. Brecht M, van Gastel M, Buhrke T, Friedrich B, Lubitz W (2003) J Am Chem Soc 125:13075–13083

    Article  CAS  PubMed  Google Scholar 

  26. Foerster S, Van Gastel M, Brecht M, Lubitz W (2005) J Biol Inorg Chem 10:51–62

    Article  CAS  PubMed  Google Scholar 

  27. Haas C, Drenth J (1999) J Cryst Growth 196:388–394

    Article  CAS  Google Scholar 

  28. Saridakis E, Chayen NE (2000) Protein Sci 9:755–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. George A, Wilson WW (1994) Acta Cryst D50:361 – 365

  30. Hussein R, Ibrahim M, Chatterjee R, Coates L, Müh F, Yachandra VK, Yano J, Kern J, Dobbek H, Zouni A (2018) Cryst Growth Des 18:85–94

    Article  CAS  PubMed  Google Scholar 

  31. Budayova-Spano M, Koruza K, Fisher Z (2020) Methods Enzymol 634:21–46

    Article  CAS  PubMed  Google Scholar 

  32. Nishikawa K, Higuchi Y (2017) Int J Microgravity Sci Appl 34:340100

    Google Scholar 

  33. Yagi T, Kimura K, Daidoji H, Sakai F, Tamura S, Inouchi H (1976) J Biochem 79:661–671

    Article  CAS  PubMed  Google Scholar 

  34. Nakamura T, Kawasaki T, Hosoya T, Toh K, Ebine M, Birumachi A, Sakasai K, Soyama K, Katagiri M (2012) J Instrum 7:C02003

    Google Scholar 

  35. Tanaka I, Kusaka K, Hosoya T, Niimura N, Ohhara T, Kurihara K, Yamada T, Ohnishi Y, Tomoyori K, Yokoyama T (2010) Acta Cryst D66:1194–1197

    Google Scholar 

  36. Kusaka K, Hosoya T, Yamada T, Tomoyori K, Ohhara T, Katagiri M, Kurihara K, Tanaka I, Niimura N (2013) J Synchrotron Rad 20:994–998

    Article  CAS  Google Scholar 

  37. Ohhara T, Kusaka K, Hosoya T, Kurihara K, Tomoyori K, Niimura N, Tanaka I, Suzuki J, Nakatani T, Otomo T, Matsuoka S, Tomita K, Nishimaki Y, Ajima T, Ryufuku S (2009) Nucl Instrum Methods Phys Res A 600:195–197

    Article  CAS  Google Scholar 

  38. Yano N, Yamada T, Hosoya T, Ohhara T, Tanaka I, Niimura N, Kusaka K (2018) Acta Cryst D74:1041–1052

    Google Scholar 

  39. Afonine PV, Mustyakimov M, Grosse-Kunstleve RW, Moriarty NW, Langan P, Adams PD (2010) Acta Cryst D66:1153–1163

    Google Scholar 

  40. Kabsch W (2010) Acta Cryst D66:125–132

    Google Scholar 

  41. Hiromoto T, Nishikawa K, Inoue S, Matsuura H, Hirano Y, Kurihara K, Kusaka K, Cuneo M, Coates L, Tamada T, Higuchi Y (2020) Acta Cryst D76:946–953

    Google Scholar 

  42. Harrison K, Wu Z, Juers DH (2019) J Appl Cryst 52:1222–1232

    Article  CAS  Google Scholar 

  43. Myles DAA, Dauvergne F, Blakeley MP, Meilleur F (2012) J Appl Cryst 45:686–692

    Article  CAS  Google Scholar 

  44. Coates L, Tomanicek S, Schrader TE, Weiss KL, Ng JD, Jüttner P, Ostermann A (2014) J Appl Cryst 47:1431–1434

    Article  CAS  Google Scholar 

  45. Coates L, Cuneo MJ, Frost MJ, He J, Weiss KL, Tomanicek SJ, McFeeters H, Vandavasi VG, Langan P, Iverson EB (2015) J Appl Cryst 48:1302–1306

    Article  CAS  Google Scholar 

  46. Teixeira VH, Soares CM, Baptista AM (2008) Proteins 70:1010–1022

    Article  CAS  PubMed  Google Scholar 

  47. Ash PA, Hidalgo R, Vincent KA (2017) ACS Catal 7:2471–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nishikawa K, Ogata H, Higuchi Y (2020) Chem Lett 49:164–173

    Article  CAS  Google Scholar 

  49. Tai H, Higuchi Y, Hirota S (2018) Dalton Trans 47(13):4408–4423

    Article  CAS  PubMed  Google Scholar 

  50. Ilina Y, Lorent C, Katz S, Jeoung JH, Shima S, Horch M, Zebger I, Dobbek H (2019) Angew Chem Int Ed 58(51):18710–18714

    Article  CAS  Google Scholar 

  51. Tai H, Nishikawa K, Inoue S, Higuchi Y, Hirota S (2015) J Phys Chem B 119:13668–13674

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partly supported by MEXT KAKENHI Grants-in-Aid for Scientific Research on Innovative Areas (Hydrogenomics) 18H05516 (to Y.H.) and for Scientific Research (A) 19H00984 (to Y.H.), (B) 19H03173 (to T.T.,) and (C) 16K07283 (to T.T.); the Hyogo Science and Technology Association (to T.H.); and a JST CREST grant JPMJCR12M4 (to Y.H.). Neutron diffraction experiments using iBIX of J-PARC were performed under user programs (proposal nos. 2014B0312, 2015A0159, 2016A0100, 2017A0036, 2017B0003, and 2018A0042) and the project for the Ibaraki prefectural local government beamline (proposal nos. 2019PX2003 and 2019PX2012). The research at ORNL’s SNS (IPTS nos. 19172.1 and 20933.1) was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. We thank Drs. K. Kusaka, L. Coates, M. Cuneo, Y. Hirano, K. Kurihara, and H. Matsuura for neutron diffraction experiments, and S. Inoue, K. Hataguchi, K. Matsumoto, Y. Ikeda, Y. Yamada, and J. Hiroki for technical assistance in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taro Tamada or Yoshiki Higuchi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiromoto, T., Nishikawa, K., Tamada, T. et al. The Challenge of Visualizing the Bridging Hydride at the Active Site and Proton Network of [NiFe]-Hydrogenase by Neutron Crystallography. Top Catal 64, 622–630 (2021). https://doi.org/10.1007/s11244-021-01417-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01417-0

Keywords

Navigation