Skip to main content

Advertisement

Log in

Effect of Au Addition on the Catalytic Performance of CuO/CeO2 Catalysts for CO2 Hydrogenation to Methanol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The bimetallic x wt% Au–CuO/CeO2 catalysts with different Au contents (x = 0.5, 1, 2 wt%) and Au/CeO2, CuO/CeO2 samples are applied for CO2 hydrogenation to methanol. The catalysts are characterized by techniques such as XRD, Raman, XPS, H2-TPR and CO2-TPD measurements. It is shown that addition of 1 wt% of Au to CuO/CeO2 improves more significantly the catalyst activity in CO2 hydrogenation to methanol compared with other Au–CuO/CeO2 samples. The 1 wt% Au–CuO/CeO2 has a better ability to dissociatively adsorb hydrogen and enhance the number of oxygen vacancies, which leads to the highest methanol selectivity (T = 240 °C, P = 3 MPa, \(S_{{{\text{CH}}_{3} {\text{OH}}}}\) = 29.6%). The in situ DRIFTS reveals that a dual site character of the Au–CuO/CeO2 catalysts for CO2 hydrogenation, with CO2 being activated on sites of the CeO2 support, then stepwise hydrogenation of (bi)carbonate to formate and methoxy, finally methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Roy S, Cherevotan A, Peter SC (2018) Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges. ACS Energy Lett 3:1938–1966

    Article  CAS  Google Scholar 

  2. Yang CS, Pei CL, Luo R et al (2020) Strong electronic oxide-support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol. J Am Chem Soc 46:19523–19531

    Article  Google Scholar 

  3. Din IU, Shaharun MS, Naeem A et al (2019) Revalorization of CO2 for methanol production via ZnO promoted carbon nanofibers based Cu–ZrO2 catalytic hydrogenation. J Energy Chem 39:68–76

    Article  Google Scholar 

  4. Din IU, Alotaibi MA, Abdulrahman IA (2020) Green synthesis of methanol over zeolite based Cu nano-catalysts, effect of Mg promoter. Sustain Chem Pharm 16:100264

    Article  Google Scholar 

  5. Bracey CL, Ellis PR, Hutchings GJ (2009) Application of copper–gold alloys in catalysis: current status and future perspectives. Chem Soc Rev 8:2231–2243

    Article  Google Scholar 

  6. Martin O, Mondelli C, Curulla-Ferre D (2015) Zinc-rich copper catalysts promoted by gold for methanol synthesis. ACS Catal 5:5607–5616

    Article  CAS  Google Scholar 

  7. Reina TR, Ivanova S, Centeno MA (2016) The role of Au, Cu and CeO2 and their interactions for an enhanced WGS performance. Appl Catal B 187:98–107

    Article  CAS  Google Scholar 

  8. Campbell CT (2004) The active site in nanoparticle gold catalysis. Science 5694:234–235

    Article  Google Scholar 

  9. Sankar M, He Q, Engel RV (2020) Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem Rev 120:3890–3938

    Article  CAS  Google Scholar 

  10. Laszlo B, Baan K, Varga E (2016) Photo-induced reactions in the CO2–methane system on titanate nanotubes modified with Au and Rh nanoparticles. Appl Catal B 199:473–484

    Article  CAS  Google Scholar 

  11. Xue HR, Wang T, Gong H (2018) Constructing ordered three-dimensional TiO2 channels for enhanced visible-light photocatalytic performance in CO2 conversion induced by Au nanoparticles. Chem Asian J 5:577–583

    Article  Google Scholar 

  12. Li Y, Na W, Wang H et al (2017) Hydrogenation of CO2 to methanol over Au–CuO/SBA15 catalyst. J Porous Mater 24:591–599

    Article  CAS  Google Scholar 

  13. Zhu JD, Su YQ, Chai JC et al (2020) Mechanism and nature of active sites for methanol synthesis from CO/CO2 on Cu/CeO2. ACS Catal 19:11532–11544

    Article  Google Scholar 

  14. Jing GJ, Zhang L, Ma YR et al (2019) Comparison of Au–Ce and Au–Cu interaction over Au/CeO2–CuO catalysts for preferential CO oxidation. CrystEngComm 21:363

    Article  CAS  Google Scholar 

  15. Jeon S, Ham H, Suh Y et al (2015) Raman scattering study of cubic–tetragonal phase transition in Zr1−xCexO2 solid solution. RSC Adv 5:54806–54815

    Article  CAS  Google Scholar 

  16. Reddy BM, Khan A, Lakshmanan P et al (2005) Structural characterization of nanosized CeO2–SiO2, CeO2–TiO2, and CeO2–ZrO2 catalysts by XRD, Raman, and HRTEM techniques. J Phys Chem B 8:3355–3363

    Article  Google Scholar 

  17. Ye J, Liu C, Mei D et al (2013) Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study. ACS Catal 3:1296–1306

    Article  CAS  Google Scholar 

  18. Liao X, Chu W, Dai X et al (2013) Bimetallic Au–Cu supported on ceria for PROX reaction: effects of Cu/Au atomic ratios and thermal pretreatments. Appl Catal B 142–143:25–37

    Article  Google Scholar 

  19. Vourros A, Garagounis I, Kyriakou V et al (2017) Carbon dioxide hydrogenation over supported Au nanoparticles: effect of the support. J CO2 Util 19:247–256

    Article  CAS  Google Scholar 

  20. Gamboa-Rosales NK, Ayastuy JL, Gonzalez-Marcos MP et al (2012) Oxygen-enhanced water gas shift over ceria-supported Au–Cu bimetallic catalysts prepared by wet impregnation and deposition-precipitation. Int J Hydrog Energy 37:7005–7016

    Article  CAS  Google Scholar 

  21. Pongstabodee S, Monyanon S, Luengnaruemitchai A (2012) Hydrogen production via methanol steam reforming over Au/CuO, Au/CeO2, and Au/CuO–CeO2 catalysts prepared by deposition-precipitation. J Ind Eng Chem 18:1272–1279

    Article  CAS  Google Scholar 

  22. An B, Zhang J, Cheng K et al (2017) Confinement of ultrasmall Cu/ZnOx nanoparticles in metal–organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J Am Chem Soc 139:3834–3840

    Article  CAS  Google Scholar 

  23. Nevanperä TK, Ojala S, Laitinen T et al (2019) Catalytic oxidation of dimethyl disulfide over bimetallic Cu–Au and Pt–Au catalysts supported on γ-Al2O3, CeO2, and CeO2–Al2O3. Catalysts 9:603

    Article  Google Scholar 

  24. Tan Q, Shi Z, Wu D (2018) CO2 Hydrogenation to methanol over a highly active Cu–Ni/CeO2-nanotube catalyst. Ind Eng Chem Res 57:10148–10158

    Article  CAS  Google Scholar 

  25. Patil P, Nakate UT, Harish K et al (2020) Au sensitized La–CeO2 catalyst coated ceramics monoliths for toluene catalysis application. Mater Chem Phys 240:12269

    Article  Google Scholar 

  26. Piqueras CM, Puccia V, Vega DA et al (2016) Selective hydrogenation of cinnamaldehyde in supercritical CO2 over Me–CeO2 (Me = Cu, Pt, Au): insight of the role of Me–Ce interaction. Appl Catal B 185:265–271

    Article  CAS  Google Scholar 

  27. Pongstabodee S, Monyanon S, Luengnaruemitchai A (2012) Hydrogen production via methanol steam reforming over Au/CuO, Au/CeO2, and Au/CuO–CeO2 catalysts prepared by deposition–precipitation. J Ind Eng Chem 18:1272–1279

    Article  CAS  Google Scholar 

  28. Wang G, Chen L, Sun Y et al (2015) Carbon dioxide hydrogenation to methanol over Cu/ZrO2/CNTs: effect of carbon surface chemistry. RSC Adv 5:45320–45330

    Article  CAS  Google Scholar 

  29. Muttaqien F, Hamamoto YJ, Hamada I et al (2017) CO2 adsorption on the copper surfaces: van der Waals density functional and TPD studies. J Chem Phys 147:094702

    Article  Google Scholar 

  30. Fisher IA, Bell AT (1997) In-situ infrared study of methanol synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2. J Catal 172:222–237

    Article  CAS  Google Scholar 

  31. Sloczynski J, Grabowski R, Kozlowska A et al (2004) Catalytic activity of the M/(3ZnO–ZrO2) system (M = Cu, Ag, Au) in the hydrogenation of CO2 to methanol. Appl Catal A 278:11

    Article  CAS  Google Scholar 

  32. Wang YH, Gao WG, Wang H et al (2017) Structure–activity relationships of Cu–ZrO2 catalysts for CO2 hydrogenation to methanol: interaction effects and reaction mechanism. RSC Adv 7:8709

    Article  CAS  Google Scholar 

  33. Liu X, Guo Q, Guo D et al (2016) Methanol synthesis from CO2 hydrogenation over copper catalysts supported on MgO-modified TiO2. J Mol Catal A 425:86–93

    Article  CAS  Google Scholar 

  34. Fujitani T, Saito M, Kanai Y et al (1995) Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen. Appl Catal A 125:199–202

    Article  Google Scholar 

  35. Pasupulety N, Driss H, Alhamed YA et al (2015) Studies on Au/Cu–Zn–Al catalyst for methanol synthesis from CO2. Appl Catal A 504:308–318

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (21876019), Fundamental Research Funds for the Central Universities (DUT19LAB10), Dalian Science and Technology Innovation Fund (2019J12SN74) and the Fund of the State Key Laboratory of Catalysis in DICP (N-18-08).

Author information

Authors and Affiliations

Author notes

  1. Weiwei Wang and Desiree Wager Kimpouni Tongo have contributed equally to this work.

    Authors

    Contributions

    WW: Conceptualization, Methodology, Formal analysis, Data curation, Investigation, Writing-Original draft preparation. DWKT: Methodology, Formal analysis, Data curation, Investigation, Writing-Original draft preparation. LS: Visualization, Investigation, Software, Methodology. ZQ: Supervision, Funding acquisition, Project administration, Resources Validation, Conceptualization, Writing-Reviewing and Editing.

    Corresponding author

    Correspondence to Zhenping Qu.

    Ethics declarations

    Conflict of interest

    There is no conflict of interest when submitting this manuscript, and all authors have approved the publication of the manuscript. And the authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Ethical Approval

    I would like to state on behalf of my co-authors that the work described is the original study, has not been published before, and has not been considered for publication elsewhere. All the authors listed have approved the accompanying manuscript while being considered by Topics in Catalysis.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Supplementary Information

    Below is the link to the electronic supplementary material.

    (DOCX 3423 kb)

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Wang, W., Tongo, D.W.K., Song, L. et al. Effect of Au Addition on the Catalytic Performance of CuO/CeO2 Catalysts for CO2 Hydrogenation to Methanol. Top Catal 64, 446–455 (2021). https://doi.org/10.1007/s11244-021-01414-3

    Download citation

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s11244-021-01414-3

    Keywords

    Navigation