Skip to main content
Log in

Hydrogen Adsorption on Ordered and Disordered Pt-Ni Alloys

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The bulk properties and chemical reactivity of disordered Pt-Ni alloys in the A1 (fcc) structure are investigated using different methods: Virtual Crystal Approximation (VCA), Korringa–Kohn–Rostoker Coherent Potential Approximation (KKR-CPA), and large explicit supercells generated using Super-Cell Random Approximates (SCRAPs). While VCA predicts lattice constants that closely follow Vegard’s law, the large supercells and KKR-CPA predict lattice constants that are consistently larger than Vegard’s law. KKR-CPA results closely agree with those from the large supercells for the disordered alloys, producing similar projected density of states and magnetic moment across the composition range. For instance, while VCA predicts the disordered alloys to be non-magnetic at a Pt concentration (xPt) ≥ 0.5, KKR-CPA and SCRAPs predict the disordered alloys to remain ferromagnetic to higher Pt concentrations. As xPt decreases, the adsorption of H becomes more exothermic on bulk-terminated (111) surfaces but less exothermic on Pt monolayer-terminated (111) surfaces due largely to strain effects. (111) surfaces cut from the large supercells predict average H adsorption energies on the disordered alloys similar to those on the ordered phases of the same compositions, while VCA predicts H adsorption to be more exothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction: An in situ XANES and EXAFS investigation. J Electrochem Soc 142:1409–1422

    CAS  Google Scholar 

  2. Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146:3750–3756

    CAS  Google Scholar 

  3. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J Phys Chem B 106:4181–4191

    CAS  Google Scholar 

  4. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497

    CAS  PubMed  Google Scholar 

  5. Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M, Chi M, More KL, Li Y, Markovic NM, Somorjai GA, Yang P, Stamenkovic VR (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343:1339–1343

    CAS  PubMed  Google Scholar 

  6. Escudero-Escribano M, Malacrida P, Hansen MH, Vej-Hansen UG, Velázquez-Palenzuela A, Tripkovic V, Schiøtz J, Rossmeisl J, Stephens IEL, Chorkendorff I (2016) Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352:73–76

    CAS  PubMed  Google Scholar 

  7. Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913

    CAS  PubMed  Google Scholar 

  8. Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135

    CAS  Google Scholar 

  9. Bu L, Zhang N, Guo S, Zhang X, Li J, Yao J, Wu T, Lu G, Ma J-Y, Su D, Huang X (2016) Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354:1410–1414

    CAS  PubMed  Google Scholar 

  10. Koh S, Strasser P (2007) Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc 129:12624–12625

    CAS  PubMed  Google Scholar 

  11. Tan TL, Wang L-L, Johnson DD, Bai K (2012) A comprehensive search for stable Pt–Pd nanoalloy configurations and their use as tunable catalysts. Nano Lett 12:4875–4880

    CAS  PubMed  Google Scholar 

  12. Hansen M, Anderko K (1958) Constitution of Binary Alloys. McGraw-Hill, New York

    Google Scholar 

  13. Xu X, Zhang X, Sun H, Yang Y, Dai X, Gao J, Li X, Zhang P, Wang H-H, Yu N-F, Sun S-G (2014) Synthesis of Pt–Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew Chem Int Ed 53:12522–12527

    CAS  Google Scholar 

  14. Kaatz FH, Bultheel A (2018) Size, shape, and compositional effects on the order-disorder phase transitions in Au-Cu and Pt-M (M = Fe Co, and Ni) nanocluster alloys. Nanotechnology 29:345701

    PubMed  Google Scholar 

  15. Kim J, Lee Y, Sun S (2010) Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J Am Chem Soc 132:4996–4997

    CAS  PubMed  Google Scholar 

  16. Chen M, Liu JP, Sun S (2004) One-step synthesis of FePt nanoparticles with tunable size. J Am Chem Soc 126:8394–8395

    CAS  PubMed  Google Scholar 

  17. Kim J, Rong C, Liu JP, Sun S (2009) Dispersible ferromagnetic FePt nanoparticles. Adv Mater 21:906–909

    CAS  Google Scholar 

  18. Wang D, Xin HL, Hovden R, Wang H, Yu Y, Muller DA, DiSalvo FJ, Abruna HD (2013) Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater 12:81–87

    CAS  PubMed  Google Scholar 

  19. Zou L, Fan J, Zhou Y, Wang C, Li J, Zou Z, Yang H (2015) Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Res 8:2777–2788

    CAS  Google Scholar 

  20. Xiong L, Manthiram A (2004) Influence of atomic ordering on the electrocatalytic activity of Pt–Co alloys in alkaline electrolyte and proton exchange membrane fuel cells. J Mater Chem 14:1454–1460

    CAS  Google Scholar 

  21. Koh S, Toney MF, Strasser P (2007) Activity–stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). Electrochim Acta 52:2765–2774

    CAS  Google Scholar 

  22. Xiong L, Manthiram A (2005) Effect of atomic ordering on the catalytic activity of carbon supported PtM (M = Fe Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs. J Electrochem Soc 152:A697–A703

    CAS  Google Scholar 

  23. Min M-k, Cho J, Cho K, Kim H (2000) Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim Acta 45:4211–4217

    CAS  Google Scholar 

  24. Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P (1994) Activity and stability of ordered and disordered Co-Pt alloys for phosphoric acid fuel cells. J Electrochem Soc 141:2659–2668

    CAS  Google Scholar 

  25. Sugawara Y, Konno M, Muto I, Hara N (2017) Formation of Pt skin layer on ordered and disordered Pt-Co Alloys and corrosion resistance in sulfuric acid. Electrocatalysis 9:539–549

    Google Scholar 

  26. Gauthier Y, Baudoing-Savois R, Rosink JJWM, Sotto M (1993) LEED study of Pt25Co75(111). Surf Sci 297:193–201

    CAS  Google Scholar 

  27. Bertolini JC, Massardier J (1991) On the specific reactivity of platinum segregated layers on Pt80X20 (111) (X= Ni Co, Fe) alloys. Catal Lett 9:183–188

    CAS  Google Scholar 

  28. Gauthier Y, Joly Y, Baudoing R, Rundgren J (1985) Surface-sandwich segregation on nondilute bimetallic alloys: Pt50Ni50 and Pt78Ni22 probed by low-energy electron diffraction. Phys Rev B 31:6216–6218

    CAS  Google Scholar 

  29. Gauthier Y, Baudoing R, Lundberg M, Rundgren J (1987) Surface-sandwich segregation and multilayer relaxation on Pt0.5Ni0.5(110) measured by low-energy electron diffraction: an observation of face-related segregation reversal. Phys Rev B 35:7867–7878

    CAS  Google Scholar 

  30. Beermann V, Kühl S, Strasser P (2018) Tuning the catalytic oxygen reduction reaction performance of Pt-Ni octahedral nanoparticles by acid treatments and thermal annealing. J Electrochem Soc 165:J3026–J3030

    CAS  Google Scholar 

  31. Li J, Xi Z, Pan YT, Spendelow JS, Duchesne PN, Su D, Li Q, Yu C, Yin Z, Shen B, Kim YS, Zhang P, Sun S (2018) Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells. J Am Chem Soc 140:2926–2932

    CAS  PubMed  Google Scholar 

  32. Wang C, Chi M, Li D, Strmcnik D, van der Vliet D, Wang G, Komanicky V, Chang K-C, Paulikas AP, Tripkovic D, Pearson J, More KL, Markovic NM, Stamenkovic VR (2011) Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J Am Chem Soc 133:14396–14403

    CAS  PubMed  Google Scholar 

  33. Singh R, Sharma A, Singh P, Balasubramanian G, Johnson DD (under review) Accelerating the computational design of high-entropy alloys. Nat Comput Sci

  34. Pinski FJ, Ginatempo B, Johnson DD, Staunton JB, Stocks GM, Gyorffy BL (1991) Origins of compositional order in NiPt alloys. Phys Rev Lett 66:766–769

    CAS  PubMed  Google Scholar 

  35. Alam A, Kraczek B, Johnson DD (2010) Structural, magnetic, and defect properties of Co-Pt-type magnetic-storage alloys: density-functional theory study of thermal processing effects. Phys Rev B 82:024435

    Google Scholar 

  36. Boes JR, Gumuslu G, Miller JB, Gellman AJ, Kitchin JR (2015) Estimating bulk-composition-dependent H2 adsorption energies on CuxPd1–x alloy (111) surfaces. ACS Catal 5:1020–1026

    CAS  Google Scholar 

  37. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  Google Scholar 

  38. Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio RA, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko HY, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen HV, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys-Condens Mat 29:465901

    CAS  Google Scholar 

  39. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys-Condens Mat 21:395502

    Google Scholar 

  40. Hamann DR (2013) Optimized norm-conserving Vanderbilt pseudopotentials. Phys Rev B 88:085117

    Google Scholar 

  41. Marzari N, Vanderbilt D, De Vita A, Payne MC (1999) Thermal contraction and disordering of the Al(110) surface. Phys Rev Lett 82:3296–3299

    CAS  Google Scholar 

  42. Korringa J (1947) On the calculation of the energy of a Bloch wave in a metal. Physica 13:392–400

    Google Scholar 

  43. Kohn W, Rostoker N (1954) Solution of the schrodinger equation in periodic lattices with an application to metallic lithium. Phys Rev 94:1111–1120

    CAS  Google Scholar 

  44. Stocks GM, Nicholson DMC, Shelton WA, Györffy BL, Pinski FJ, Johnson DD, Staunton JB, Ginatempo B, Turchi PEA, Sluiter M (1994) Statics and Dynamics of Alloy Phase Transformations. Springer, Boston

    Google Scholar 

  45. Stocks GM, Shelton WA, Nicholson DM, Pinski FJ, Ginatempo B, Barbieri A, Györffy BL, Johnson DD, Staunton JB, Turchi PEA, Sluiter M (1992) Ordered Intermetallics - Physical Metallurgy and Mechanical Behaviour. Springer, Dordrecht

    Google Scholar 

  46. Soven P (1967) Coherent-potential model of substitutional disordered alloys. Phys Rev 156:809–813

    CAS  Google Scholar 

  47. Johnson DD, Nicholson DM, Pinski FJ, Gyorffy BL, Stocks GM (1986) Density-functional theory for random alloys: total energy within the coherent-potential approximation. Phys Rev Lett 56:2088–2091

    CAS  PubMed  Google Scholar 

  48. Alam A, Johnson DD (2012) Structural properties and relative stability of (meta)stable ordered, partially ordered, and disordered Al-Li alloy phases. Phys Rev B 85:144202

    Google Scholar 

  49. Andersen OK (1975) Linear methods in band theory. Phys Rev B 12:3060–3083

    CAS  Google Scholar 

  50. Alam A, Johnson DD (2009) Optimal site-centered electronic structure basis set from a displaced-center expansion: improved results via a priori estimates of saddle points in the density. Phys Rev B 80:125123

    Google Scholar 

  51. Nordheim L (1931) Zur Elektronentheorie der Metalle. I Ann Phys-Berlin 401:607–640

    Google Scholar 

  52. Yang X, Suash D (2009) Cuckoo Search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp 210–214

  53. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Google Scholar 

  54. Lide DR (2004) Handbook of Chemistry and Physics: A Ready-Reference of Chemical and Physical Data, 84th edn. CRC, New York

    Google Scholar 

  55. Dahmani CE (1985) Thesis. Louis Pasteur University, Strasbourg

    Google Scholar 

  56. Parra RE, Cable JW (1980) Neutron study of magnetic-moment distribution in Ni-Pt alloys. Phys Rev B 21:5494–5504

    CAS  Google Scholar 

  57. Kumar U, Padmalekha KG, Mukhopadhyay PK, Paudyal D, Mookerjee A (2005) Magnetic transition in NiPt alloy systems: experiment and theory. J Magn Magn Mater 292:234–240

    CAS  Google Scholar 

  58. Zarkevich NA, Johnson DD (2019) Reliable thermodynamic estimators for screening caloric materials. J Alloys Compd 802:712–722

    CAS  Google Scholar 

  59. Haas P, Tran F, Blaha P (2009) Calculation of the lattice constant of solids with semilocal functionals. Phys Rev B 79:085104

    Google Scholar 

  60. Nilsson A, Pettersson LGM, Hammer B, Bligaard T, Christensen CH, Nørskov JK (2005) The electronic structure effect in heterogeneous catalysis. Catal Lett 100:111–114

    CAS  Google Scholar 

  61. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45:2897–2901

    CAS  Google Scholar 

  62. Gumuslu G, Kondratyuk P, Boes JR, Morreale B, Miller JB, Kitchin JR, Gellman AJ (2015) Correlation of electronic structure with catalytic activity: H2–D2 exchange across CuxPd1–x composition space. ACS Catal 5:3137–3147

    CAS  Google Scholar 

  63. Pinski FJ, Ginatempo B, Johnson DD, Staunton JB, Stocks GM, Gyorffy BL (1992) Reply to Comment on "The Origins of compositional order in NiPt". Phys Rev Lett 68:1962–1962

    CAS  PubMed  Google Scholar 

  64. Thirumalai H, Kitchin JR (2018) Investigating the reactivity of single atom alloys using density functional theory. Top Catal 61:462–474

    CAS  Google Scholar 

  65. Nahm T-U, Kim J-Y, Oh SJ, Chung SM, Park JH, Allen JW, Jeong K, Kim S (1996) Photoemission study of electronic structures of disordered Ni-Pt and Cu-Pt alloys. Phys Rev B 54:7807–7815

    CAS  Google Scholar 

  66. Kumar U, Mukhopadhyay PK, Sanyal B, Eriksson O, Nordblad P, Paudyal D, Tarafder K, Mookerjee A (2006) Experimental and theoretical study of annealed Ni-Pt alloys. Phys Rev B 74:064401

    Google Scholar 

  67. Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819–2822

    Google Scholar 

  68. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 93:156801

    CAS  PubMed  Google Scholar 

  69. Xu Y, Ruban AV, Mavrikakis M (2004) Adsorption and dissociation of O2 on Pt-Co and Pt-Fe Alloys. J Am Chem Soc 126:4717–4725

    CAS  PubMed  Google Scholar 

  70. Pillay D, Johannes MD (2008) Comparison of sulfur interaction with hydrogen on Pt(111), Ni(111) and Pt3Ni(111) surfaces: the effect of intermetallic bonding. Surf Sci 602:2752–2757

    CAS  Google Scholar 

  71. Li X, Wan W, Kattel S, Chen JG, Wang T (2016) Selective hydrogenation of biomass-derived 2(5H)-furanone over Pt-Ni and Pt-Co bimetallic catalysts: from model surfaces to supported catalysts. J Catal 344:148–156

    CAS  Google Scholar 

  72. Du P, Wu P, Cai C (2017) Mechanism of methanol decomposition on the Pt3Ni(111) Surface: DFT study. J Phys Chem C 121:9348–9360

    CAS  Google Scholar 

  73. Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220

    CAS  Google Scholar 

  74. Kitchin JR, Khan NA, Barteau MA, Chen JG, Yakshinskiy B, Madey TE (2003) Elucidation of the active surface and origin of the weak metal–hydrogen bond on Ni/Pt(111) bimetallic surfaces: a surface science and density functional theory study. Surf Sci 544:295–308

    CAS  Google Scholar 

  75. Bai Y, Kirvassilis D, Xu L, Mavrikakis M (2019) Atomic and molecular adsorption on Ni(111). Surf Sci 679:240–253

    CAS  Google Scholar 

  76. Greeley J, Mavrikakis M (2003) A first-principles study of surface and subsurface H on and in Ni(111): diffusional properties and coverage-dependent behavior. Surf Sci 540:215–229

    CAS  Google Scholar 

  77. Taylor CD, Neurock M, Scully JR (2011) A first-principles model for hydrogen uptake promoted by sulfur on Ni(111). J Electrochem Soc 158:F36

    CAS  Google Scholar 

  78. Wellendorff J, Silbaugh TL, Garcia-Pintos D, Nørskov JK, Bligaard T, Studt F, Campbell CT (2015) A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals. Surf Sci 640:36–44

    CAS  Google Scholar 

  79. Hoster HE, Janik MJ, Neurock M, Behm RJ (2010) Pt promotion and spill-over processes during deposition and desorption of upd-Had and OHad on PtxRu1−x/Ru(0001) surface alloys. Phys Chem Chem Phys 12:10388–10397

    CAS  PubMed  Google Scholar 

  80. Ford DC, Xu Y, Mavrikakis M (2005) Atomic and molecular adsorption on Pt(111). Surf Sci 587:159–174

    CAS  Google Scholar 

  81. Su HY, Bao XH, Li WX (2008) Modulating the reactivity of Ni-containing Pt(111)-skin catalysts by density functional theory calculations. J Chem Phys 128:194707

    PubMed  Google Scholar 

  82. Papoian G, Nørskov JK, Hoffmann R (2000) A comparative theoretical study of the hydrogen, methyl, and ethyl chemisorption on the Pt(111) surface. J Am Chem Soc 122:4129–4144

    CAS  Google Scholar 

  83. Wang G-C, Zhou Y-H, Morikawa Y, Nakamura J, Cai Z-S, Zhao X-Z (2005) Kinetic mechanism of methanol decomposition on Ni(111) surface: a theoretical study. J Phys Chem B 109:12431–12442

    CAS  PubMed  Google Scholar 

  84. Shin YK, Gai L, Raman S, van Duin ACT (2016) Development of a ReaxFF reactive force field for the Pt-Ni alloy catalyst. J Phys Chem A 120:8044–8055

    CAS  PubMed  Google Scholar 

  85. Hamada I, Morikawa Y (2008) Density-functional analysis of hydrogen on Pt(111): electric field, solvent, and coverage effects. J Phys Chem C 112:10889–10898

    CAS  Google Scholar 

  86. Lapujoulade J, Neil KS (1972) Chemisorption of hydrogen on the (111) plane of nickel. J Chem Phys 57:3535–3545

    CAS  Google Scholar 

  87. Christmann K, Schober O, Ertl G, Neumann M (1974) Adsorption of hydrogen on nickel single crystal surfaces. J Chem Phys 60:4528–4540

    CAS  Google Scholar 

  88. Poelsema B, Mechtersheimer G, Comsa G (1981) The interaction of hydrogen with platinum(s)−9(111)×(111) studied with helium beam diffraction. Surf Sci 111:519–544

    CAS  Google Scholar 

  89. Hoffmannová H, Okube M, Petrykin V, Krtil P, Mueller JE, Jacob T (2013) Surface stability of Pt3Ni nanoparticulate alloy electrocatalysts in hydrogen adsorption. Langmuir 29:9046–9050

    PubMed  Google Scholar 

  90. Zhang L, Anderson RM, Crooks RM, Henkelman G (2015) Correlating structure and function of metal nanoparticles for catalysis. Surf Sci 640:65–72

    CAS  Google Scholar 

  91. Zhang L, Henkelman G (2015) Computational design of alloy-core@shell metal nanoparticle catalysts. ACS Catal 5:655–660

    CAS  Google Scholar 

  92. Friebel D, Viswanathan V, Miller DJ, Anniyev T, Ogasawara H, Larsen AH, O’Grady CP, Nørskov JK, Nilsson A (2012) Balance of nanostructure and bimetallic interactions in Pt model fuel cell catalysts: in situ XAS and DFT study. J Am Chem Soc 134:9664–9671

    CAS  PubMed  Google Scholar 

  93. Xin H, Linic S (2010) Communications: exceptions to the d-band model of chemisorption on metal surfaces: the dominant role of repulsion between adsorbate states and metal d-states. J Chem Phys 132:221101

    PubMed  Google Scholar 

  94. Xin H, Schweitzer N, Nikolla E, Linic S (2010) Communications: developing relationships between the local chemical reactivity of alloy catalysts and physical characteristics of constituent metal elements. J Chem Phys 132:111101

    PubMed  Google Scholar 

  95. Wang LL, Johnson DD (2008) Electrocatalytic properties of PtBi and PtPb intermetallic line compounds via DFT: CO and H adsorption. J Phys Chem C 112:8266–8275

    CAS  Google Scholar 

  96. Hartmann H, Diemant T, Bergbreiter A, Bansmann J, Hoster HE, Behm RJ (2009) Surface alloy formation, short-range order, and deuterium adsorption properties of monolayer PdRu/Ru(0001) surface alloys. Surf Sci 603:1439–1455

    CAS  Google Scholar 

Download references

Acknowledgements

We dedicate this article to Professor Manos Mavrikakis in honor of his 2019 Gabor A. Somorjai Award for Creative Research in Catalysis. Modeling and simulation work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Catalysis Science Program, under Award No. DE-SC0018408 and was performed at Louisiana State University using high-performance computing resources provided by LSU (hpc.lsu.edu) and by the National Energy Research Scientific Computing Center, an Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational materials software development was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science & Engineering Division and was done at Ames Laboratory. Ames Laboratory is operated by Iowa State University for the U.S. Department of Energy under Contract No. DE-AC02-07CH11358.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Johnson, D.D., Shelton, W.A. et al. Hydrogen Adsorption on Ordered and Disordered Pt-Ni Alloys. Top Catal 63, 714–727 (2020). https://doi.org/10.1007/s11244-020-01338-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01338-4

Navigation