Skip to main content

Advertisement

Log in

How to Valorize Peanut Shells by a Simple Thermal-Catalytic Method

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this work, a simple thermal-catalytic system was used to valorize peanut shells (Arachis hypogaea), the residual biomass from the peanut industry. To accomplish this purpose, tin modified MEL zeolites were synthesized to catalyze pyrolysis vapors reactions in order to improve bio-oil quality. The processes were conducted at 500 °C for 10 min, with biomass-to-catalyst ratio of 1:1. Proximate, ultimate and elemental analyses of the peanut shells were carried out. Biopolymer composition and HHV were also determined. Thermal decomposition behavior of the raw material was assessed by TGA/DTG analysis. Tin was incorporated to the zeolite matrix by the wet impregnation method to obtain loads of 2, 5, 7 and 10 wt%. All the catalysts were characterized by XRD, TPR, FTIR and BET surface area. Liquid products composition was determined by GC–MS. The material with 5 wt% of tin showed the best results. The optimal combination of Lewis and Brönsted acid sites in this catalyst promoted the necessary reactions to enhance bio-oil quality. In this sense, hydrocarbons selectivity in the presence of the 5 wt% tin zeolite was ten times the one reached in the absence of catalysts. Likewise, 5-hydroxymethyl-furfural formation was favored, obtaining the highest selectivity with the same metal load on the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Guedes RE, Luna AS, Torres AR (2018) Operating parameters for bio-oil production in biomass pyrolysis: a review. J Anal Appl Pyrol 129:134–149. https://doi.org/10.1016/j.jaap.2017.11.019

    Article  CAS  Google Scholar 

  2. Food and Agricultural Organization of the United Nations (2018) FAOSTAT, Browse Data, Publication, Crops. http://www.fao.org/faostat/es/#data/QC. Accessed 5 Oct 2018

  3. Bolsa de Comercio de Córdoba (2006) Encadenamiento productivo del maní. In: El Balance de la Economía Argentina 2006. Una nueva oportunidad. Bolsa de Comercio de Córdoba, Córdoba, pp 531–548

  4. Rico X, Gullón B, Alonso JL et al (2018) Valorization of peanut shells: manufacture of bioactive oligosaccharides. Carbohydr Polym 183:21–28. https://doi.org/10.1016/j.carbpol.2017.11.009

    Article  CAS  PubMed  Google Scholar 

  5. Kuprianov VI, Arromdee P (2013) Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: a comparative study. Bioresour Technol 140:199–210. https://doi.org/10.1016/j.biortech.2013.04.086

    Article  CAS  PubMed  Google Scholar 

  6. Wang N, Tahmasebi A, Yu J et al (2015) A comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass. Bioresour Technol 190:89–96. https://doi.org/10.1016/j.biortech.2015.04.038

    Article  CAS  PubMed  Google Scholar 

  7. Veses A, Puértolas B, Callén MS, García T (2015) Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: effect of different metal cations on the bio-oil final properties. Microporous Mesoporous Mater 209:189–196. https://doi.org/10.1016/j.micromeso.2015.01.012

    Article  CAS  Google Scholar 

  8. Xiu S, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sustain Energy Rev 16:4406–4414. https://doi.org/10.1016/j.rser.2012.04.028

    Article  CAS  Google Scholar 

  9. Mamaeva A, Tahmasebi A, Tian L, Yu J (2016) Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil. Bioresour Technol 211:382–389. https://doi.org/10.1016/j.biortech.2016.03.120

    Article  CAS  PubMed  Google Scholar 

  10. Kay Lup AN, Abnisa F, Wan Daud WMA, Aroua MK (2017) A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds. J Ind Eng Chem 56:1–34. https://doi.org/10.1016/j.jiec.2017.06.049

    Article  CAS  Google Scholar 

  11. Xia C, Liu Y, Lin M et al (2018) Confirmation of the isomorphous substitution by Sn atoms in the framework positions of MFI-typed zeolite. Catal Today. https://doi.org/10.1016/j.cattod.2018.02.056

    Article  Google Scholar 

  12. Corma A, Domine ME, Valencia S (2003) Water-resistant solid Lewis acid catalysts: meerwein-Ponndorf-Verley and Oppenauer reactions catalyzed by tin-beta zeolite. J Catal 215:294–304. https://doi.org/10.1016/S0021-9517(03)00014-9

    Article  CAS  Google Scholar 

  13. Oudenhoven SRG, Westerhof RJM, Aldenkamp N et al (2013) Demineralization of wood using wood-derived acid: towards a selective pyrolysis process for fuel and chemicals production. J Anal Appl Pyrol 103:112–118. https://doi.org/10.1016/j.jaap.2012.10.002

    Article  CAS  Google Scholar 

  14. Dobele G, Urbanovich I, Volpert A et al (2007) Fast pyrolysis-effect of wood drying on the yield and properties of bio-oil. BioResources 2:699–706. https://doi.org/10.15376/biores.2.4.698-706

    Article  CAS  Google Scholar 

  15. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048

    Article  CAS  Google Scholar 

  16. Chu P, Woodbury N (1972) Crystalline ZSM-11. 203–210

  17. Saldarriaga JF, Aguado R, Pablos A et al (2015) Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel 140:744–751. https://doi.org/10.1016/j.fuel.2014.10.024

    Article  CAS  Google Scholar 

  18. Friedl A, Padouvas E, Rotter H, Varmuza K (2005) Prediction of heating values of biomass fuel from elemental composition. Anal Chim Acta 544:191–198. https://doi.org/10.1016/j.aca.2005.01.041

    Article  CAS  Google Scholar 

  19. Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063. https://doi.org/10.1016/S0016-2361(01)00131-4

    Article  CAS  Google Scholar 

  20. Jaurena G, Wawrzkiewicz M (2013) evaluación de forrajes y alimentos Guía de procedimientos analíticos. 1–62

  21. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  22. Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141:347–354

    Article  CAS  Google Scholar 

  23. García JR, Bertero M, Falco M, Sedran U (2015) Catalytic cracking of bio-oils improved by the formation of mesopores by means of y zeolite desilication. Appl Catal A 503:1–8. https://doi.org/10.1016/j.apcata.2014.11.005

    Article  CAS  Google Scholar 

  24. Akhtar J, Saidina Amin N (2012) A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sustain Energy Rev 16:5101–5109. https://doi.org/10.1016/j.rser.2012.05.033

    Article  CAS  Google Scholar 

  25. Aho A, Kumar N, Eränen K et al (2008) Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel 87:2493–2501. https://doi.org/10.1016/j.fuel.2008.02.015

    Article  CAS  Google Scholar 

  26. Gurevich Messina LI, Bonelli PR, Cukierman AL (2017) Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells. Renew Energy 114:697–707. https://doi.org/10.1016/j.renene.2017.07.065

    Article  CAS  Google Scholar 

  27. Carrier M, Loppinet-Serani A, Denux D et al (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35:298–307. https://doi.org/10.1016/j.biombioe.2010.08.067

    Article  CAS  Google Scholar 

  28. Nsaful F, Collard FX, Carrier M et al (2015) Lignocellulose pyrolysis with condensable volatiles quantification by thermogravimetric analysis—thermal desorption/gas chromatography-mass spectrometry method. J Anal Appl Pyrol 116:86–95. https://doi.org/10.1016/j.jaap.2015.10.002

    Article  CAS  Google Scholar 

  29. Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manage 51:969–982. https://doi.org/10.1016/j.enconman.2009.11.038

    Article  CAS  Google Scholar 

  30. Quan C, Gao N, Song Q (2016) Pyrolysis of biomass components in a TGA and a fixed-bed reactor: thermochemical behaviors, kinetics, and product characterization. J Anal Appl Pyrol 121:84–92. https://doi.org/10.1016/j.jaap.2016.07.005

    Article  CAS  Google Scholar 

  31. Raveendran K, Ganesh A, Khilar KC (1996) Pyrolysis characteristics of biomass and biomass components. Fuel 75:987–998. https://doi.org/10.1016/0016-2361(96)00030-0

    Article  CAS  Google Scholar 

  32. Widayatno WB, Guan G, Rizkiana J et al (2016) Upgrading of bio-oil from biomass pyrolysis over Cu-modified β-zeolite catalyst with high selectivity and stability. Appl Catal B 186:166–172. https://doi.org/10.1016/j.apcatb.2016.01.006

    Article  CAS  Google Scholar 

  33. Haneda M, Ohzu SI, Kintaichi Y et al (2001) Sol-gel prepared Sn-Al2O3 catalysts for the selective reduction of NO with propene. Bull Chem Soc Jpn 74:2075–2081. https://doi.org/10.1246/bcsj.74.2075

    Article  CAS  Google Scholar 

  34. Busca G (1999) The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization. Phys Chem Chem Phys 1:723–736. https://doi.org/10.1039/a808366e

    Article  CAS  Google Scholar 

  35. Xia C, Liu Y, Lin M et al (2018) Confirmation of the isomorphous substitution by Sn atoms in the framework positions of MFI-typed zeolite. Catal Today 316:193–198. https://doi.org/10.1016/j.cattod.2018.02.056

    Article  CAS  Google Scholar 

  36. Yuan E, Dai W, Wu G et al (2018) Facile synthesis of Sn-containing MFI zeolites as versatile solid acid catalysts. Microporous Mesoporous Mater 270:265–273. https://doi.org/10.1016/j.micromeso.2018.05.032

    Article  CAS  Google Scholar 

  37. Li L, Stroobants C, Lin K et al (2011) Selective conversion of trioses to lactates over Lewis acid heterogeneous catalysts. Green Chem 13:1175–1181. https://doi.org/10.1039/c0gc00923g

    Article  CAS  Google Scholar 

  38. Schwidder M, Kumar MS, Bentrup U et al (2008) The role of Brønsted acidity in the SCR of NO over Fe-MFI catalysts. Microporous and Mesoporous Mater 111:124–133. https://doi.org/10.1016/j.micromeso.2007.07.019

    Article  CAS  Google Scholar 

  39. Pierella LB, Saux C, Caglieri SC (2008) Catalytic activity and magnetic properties of Co–ZSM-5 zeolites prepared by different methods. Appl Catal A 347:55–61. https://doi.org/10.1016/j.apcata.2008.05.033

    Article  CAS  Google Scholar 

  40. Rhee KH, Rao VUS, Stencel M et al (1983) Supported transition metal compounds. Infrared studies on the acidity of Co/ZSM-5 and Fe/ZSM-5 catalysts. Zeolites 3:337–343

    Article  CAS  Google Scholar 

  41. Borade R, Sayari A, Adnot A, Kaliaguine S (1990) Characterization of acidity in ZSM-5 zeolites: an X-ray photoelectron and I R spectroscopy study. J Phys Chem 94:5989–5994

    Article  CAS  Google Scholar 

  42. Lu T, Fu X, Zhou L et al (2017) Promotion effect of Sn on Au/Sn-USY catalysts for one-pot conversion of glycerol to methyl lactate. ACS Catal 1:1. https://doi.org/10.1021/acscatal.7b02254

    Article  CAS  Google Scholar 

  43. Winoto HP, Ahn BS, Jae J (2016) Production of γ-valerolactone from furfural by a single-step process using Sn-Al-Beta zeolites: optimizing the catalyst acid properties and process conditions. J Ind Eng Chem 40:62–71. https://doi.org/10.1016/j.jiec.2016.06.007

    Article  CAS  Google Scholar 

  44. Dijkmans J, Dusselier M, Gabriëls D et al (2015) Cooperative catalysis for multistep biomass conversion with Sn/Al beta zeolite. ACS Catal 5:928–940. https://doi.org/10.1021/cs501388e

    Article  CAS  Google Scholar 

  45. Aysu T, Küçük MM (2014) Biomass pyrolysis in a fixed-bed reactor: effects of pyrolysis parameters on product yields and characterization of products. Energy 64:1002–1025. https://doi.org/10.1016/j.energy.2013.11.053

    Article  CAS  Google Scholar 

  46. Gurevich Messina LI, Bonelli PR, Cukierman AL (2015) Copyrolysis of peanut shells and cassava starch mixtures: effect of the components proportion. J Anal Appl Pyrol 113:508–517. https://doi.org/10.1016/j.jaap.2015.03.017

    Article  CAS  Google Scholar 

  47. Mamleev V, Bourbigot S, Le Bras M, Yvon J (2009) The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis. Interdependence of the steps. J Anal Appl Pyrol 84:1–17. https://doi.org/10.1016/j.jaap.2008.10.014

    Article  CAS  Google Scholar 

  48. Stefanidis SD, Kalogiannis KG, Iliopoulou EF et al (2011) In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor. Bioresour Technol 102:8261–8267. https://doi.org/10.1016/j.biortech.2011.06.032

    Article  CAS  PubMed  Google Scholar 

  49. Gurevich Messina LI, Bonelli PR, Cukierman AL (2017) In-situ catalytic pyrolysis of peanut shells using modified natural zeolite. Fuel Process Technol 159:160–167. https://doi.org/10.1016/j.fuproc.2017.01.032

    Article  CAS  Google Scholar 

  50. Renzini S, Sedran U, Pierella LB (2009) H-ZSM-11 and Zn-ZSM-11 zeolites and their applications in the catalytic transformation of LDPE. J Anal Appl Pyrol 86:215–220. https://doi.org/10.1016/j.jaap.2009.06.008

    Article  CAS  Google Scholar 

  51. Perego C, Bosetti A (2011) Biomass to fuels: the role of zeolite and mesoporous materials. Microporous Mesoporous Mater 144:28–39. https://doi.org/10.1016/j.micromeso.2010.11.034

    Article  CAS  Google Scholar 

  52. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18:590–598. https://doi.org/10.1021/ef034067u

    Article  CAS  Google Scholar 

  53. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889. https://doi.org/10.1021/ef0502397

    Article  CAS  Google Scholar 

  54. Cheng YT, Jae J, Shi J et al (2012) Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts. Angew Chem Int Ed 51:1387–1390. https://doi.org/10.1002/anie.201107390

    Article  CAS  Google Scholar 

  55. Gamliel DP, Cho HJ, Fan W, Valla JA (2016) On the effectiveness of tailored mesoporous MFI zeolites for biomass catalytic fast pyrolysis. Appl Catal A 522:109–119. https://doi.org/10.1016/j.apcata.2016.04.026

    Article  CAS  Google Scholar 

  56. Pierella LB, Renzini S, Anunziata OA (2005) Catalytic degradation of high density polyethylene over microporous and mesoporous materials. Microporous Mesoporous Mater 81:155–159. https://doi.org/10.1016/j.micromeso.2004.11.015

    Article  CAS  Google Scholar 

  57. Murzin DY, Simakova IL (2013) Catalysis in biomass processing. In: Pecoraro VL, Reedijk J (eds) Comprehensive inorganic chemistry II: from elements to applications, 2nd edn. Elsevier Ltd., Amsterdam, pp 559–586

    Chapter  Google Scholar 

  58. Corma Canos A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502. https://doi.org/10.1021/cr050989d

    Article  CAS  Google Scholar 

  59. Sitthisa S, An W, Resasco DE (2011) Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts. J Catal 284:90–101. https://doi.org/10.1016/j.jcat.2011.09.005

    Article  CAS  Google Scholar 

  60. Yemiş O, Mazza G (2011) Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresour Technol 102:7371–7378. https://doi.org/10.1016/j.biortech.2011.04.050

    Article  CAS  PubMed  Google Scholar 

  61. Wang X, Chen W, Li Z et al (2018) Synthesis of bis(amino)furans from biomass based 5-hydroxymethyl furfural. J Energy Chem 27:209–214. https://doi.org/10.1016/j.jechem.2017.06.015

    Article  CAS  Google Scholar 

  62. Marianou AA, Michailof CM, Pineda A et al (2018) Effect of Lewis and BrØnsted acidity on glucose conversion to 5-HMF and lactic acid in aqueous and organic media. Appl Catal A 555:75–87. https://doi.org/10.1016/j.apcata.2018.01.029

    Article  CAS  Google Scholar 

  63. Yu IKM, Tsang DCW, Yip ACK et al (2016) Valorization of food waste into hydroxymethylfurfural: dual role of metal ions in successive conversion steps. Bioresour Technol 219:338–347. https://doi.org/10.1016/j.biortech.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  64. Dutta S, De S, Alam MI et al (2012) Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. J Catal 288:8–15. https://doi.org/10.1016/j.jcat.2011.12.017

    Article  CAS  Google Scholar 

  65. Choudhary V, Mushrif SH, Ho C et al (2013) Insights into the interplay of lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. J Am Chem Soc 135:3997–4006. https://doi.org/10.1021/ja3122763

    Article  CAS  PubMed  Google Scholar 

  66. Lopes M, Dussan K, Leahy JJ, da Silva VT (2017) Conversion of d-glucose to 5-hydroxymethylfurfural using Al2O3-promoted sulphated tin oxide as catalyst. Catal Today 279:233–243. https://doi.org/10.1016/j.cattod.2016.05.030

    Article  CAS  Google Scholar 

  67. Caratzoulas S, Davis ME, Gorte RJ et al (2014) Challenges of and insights into acid-catalyzed transformations of sugars. J Phys Chem C 118:22815–22833. https://doi.org/10.1021/jp504358d

    Article  CAS  Google Scholar 

  68. Kelkar S, Saffron CM, Andreassi K et al (2015) A survey of catalysts for aromatics from fast pyrolysis of biomass. Appl Catal B 174–175:85–95. https://doi.org/10.1016/j.apcatb.2015.02.020

    Article  CAS  Google Scholar 

  69. Lopes JM, Ribeiro MF, Ribeiro FR et al (2011) Catalytic cracking in the presence of guaiacol. Appl Catal B 101:613–621. https://doi.org/10.1016/j.apcatb.2010.11.002

    Article  CAS  Google Scholar 

  70. Ministerio de Energía y Minería - Subsecretaría de Energía - República Argentina. (2018) Tabla de conversiones energéticas. http://www.energia.gob.ar/contenidos/verpagina.php?idpagina=3622. Accessed 31 Oct 2018

Download references

Acknowledgements

We wish to thank to Ministerio de Ciencia y Tecnología de Córdoba (PIOdo 2015), to Secretaría de Políticas Universitarias de la Nación (Universidades Agregando Valor 3454), to Universidad Tecnológica Nacional (PID UTN 4333) and to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla S. Fermanelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fermanelli, C.S., Galarza, E.D., Pierella, L.B. et al. How to Valorize Peanut Shells by a Simple Thermal-Catalytic Method. Top Catal 62, 918–930 (2019). https://doi.org/10.1007/s11244-019-01176-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01176-z

Keywords

Navigation