Skip to main content
Log in

Formaldehyde Oxidation Over Platinum: On the Kinetics Relevant to Exhaust Conditions of Lean-Burn Natural Gas Engines

  • Original Article
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Kinetics of formaldehyde oxidation over Pt-based catalytic converters at oxygen-rich conditions related to the exhaust of lean-burn natural gas engines is investigated experimentally and numerically. The numerical model proposed in this work is based on a thermodynamically consistent detailed surface reaction mechanism consisting of 30 elementary-like-steps among six gas-phase and ten surface species. The surface mechanism is evaluated by comparison of the results of the numerical simulation with the experimental measurements. The experimental data are derived from isothermal end-of-pipe tests over a powdered Pt–TiO2–SiO2 catalyst as well as spatially resolved concentration measurements conducted with a catalytic monolith sample over a wide range of temperature. The measurements were performed in a gas mixture of 80 ppm HCHO, 10 vol% O2, 12 vol% H2O and 6 vol% CO2 balanced with N2, containing a formaldehyde concentration typical in the exhaust of lean-burn gas engines. The simulations are based on a one-dimensional approach for the description of a packed-bed reactor and a two-dimensional model for the calculation of flow field and chemical reactions inside a single channel of a monolith.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Torkashvand B, Lott P, Zengel D, Maier L, Hettel M, Grunwaldt J-D, Deutschmann O (2018) Chem Eng J. https://doi.org/10.1016/j.cej.2018.08.186

    Article  Google Scholar 

  2. Lemel M, Hultqvist A, Vressner A, Nordgren H, Persson H, Johansson B (2005) SAE Trans J Fuels Lubr 114:1347–1357

    Google Scholar 

  3. Corrêa SM, Arbilla G (2005) Atmos Environ 39:4513–4518

    Article  CAS  Google Scholar 

  4. Charles E, Mitchell DB, Olsen (2000) J Eng Gas Turbines Power 122:603–610

    Article  Google Scholar 

  5. Yoon S, Hu S, Kado NY, Thiruvengadam A, Collins JF, Gautam M, Herner JD, Ayala A (2014) Atmos Environ 83:220–228

    Article  CAS  Google Scholar 

  6. Karavalakis G, Hajbabaei M, Jiang Y, Yang J, Johnson KC, Cocker DR, Durbin TD (2016) Fuel 175:146–156

    Article  CAS  Google Scholar 

  7. Zhang C, He H (2007) Catal Today 126:345–350

    Article  CAS  Google Scholar 

  8. Colussi S, Boaro M, de Rogatis L, Pappacena A, de Leitenburg C, Llorca J, Trovarelli A (2015) Catal Today 253:163–171

    Article  CAS  Google Scholar 

  9. Zhang C, He H, Tanaka K-i (2006) Appl Catal B 65:37–43

    Article  CAS  Google Scholar 

  10. Bai B, Qiao Q, Li J, Hao J (2016) Chin J Catal 37:102–122

    Article  CAS  Google Scholar 

  11. Mhadeshwar AB, Vlachos DG (2007) Ind Eng Chem Res 46:5310–5324

    Article  CAS  Google Scholar 

  12. Li S, Lu X, Guo W, Zhu H, Li M, Zhao L, Li Y, Shan H (2012) Formaldehyde oxidation on the Pt/TiO2(101) surface. J Organomet Chem 704:38–48

    Article  CAS  Google Scholar 

  13. Attard GA, Ebert HD, Parsons R (1990) Surf Sci 240:125–135

    Article  CAS  Google Scholar 

  14. McCabe RW, McCready DF (1984) Chem Phys Lett 111:89–93

    Article  CAS  Google Scholar 

  15. Sharma H, Mhadeshwar A (2012) Appl Catal B 127:190–204

    Article  CAS  Google Scholar 

  16. Gdowski GE, Fair JA, Madix RJ (1983) Surf Sci Lett 127:A177

    Article  Google Scholar 

  17. Silbaugh TL, Karp EM, Campbell CT (2016) Surf Sci 650:140–143

    Article  CAS  Google Scholar 

  18. Mhadeshwar AB, Wang H, Vlachos DG (2003) J Phys Chem B 107:12721–12733

    Article  CAS  Google Scholar 

  19. Peng J, Wang S (2007) Appl Catal B 73:282–291

    Article  CAS  Google Scholar 

  20. Delgado K, Maier L, Tischer S, Zellner A, Stotz H, Deutschmann O (2015) Catalysts 5:871–904

    Article  CAS  Google Scholar 

  21. Schedlbauer T, Gremminger A, Casapu M, Deutschmann O, Grunwaldt J-D (2018) SAE Technical Paper 2018-01-5021

  22. Hettel M, Diehm C, Torkashvand B, Deutschmann O (2013) Catal Today 216:2–10

    Article  CAS  Google Scholar 

  23. Diehm C, Deutschmann O (2014) Int J Hydrog Energy 39:17998–18004

    Article  CAS  Google Scholar 

  24. Livio D, Diehm C, Donazzi A, Beretta A, Deutschmann O (2013) Appl Catal A 467:530–541

    Article  CAS  Google Scholar 

  25. O.Deutschmann S, Tischer S, Kleditzsch VM, Janardhanan C, Correa D, Chatterjee N, Mladenov HD, Minh, DETCHEM Software package, 2017. http://www.detchem.com

  26. Raja LL, Kee RJ, Deutschmann O, Warnatz J, Schmidt LD (2000) Catal Today 59:47–60

    Article  CAS  Google Scholar 

  27. Kee RJ, Coltrin ME, Glarborg P (2003) Chemically reacting flow: theory and practice. John Wiley & Son, Inc., Hoboken

    Book  Google Scholar 

  28. Deutschmann O, Knözinger H, Schüth F, Weitkamp J (eds) (2008) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  29. Dumesic JA, Rudd DF, Aparicio LM, Rekoske JE, Treviño AA (1993) The microkinetics of heterogeneous catalysis. ACS, Washington DC.

    Google Scholar 

  30. Cortright RD, Dumesic JA (2001) Advances in catalysis. Academic Press, Cambridge, pp 161–264

    Google Scholar 

  31. Shustorovich E, Sellers H (1998) Surf Sci Rep 31:1–119

    Article  CAS  Google Scholar 

  32. Shustorovich E (1990) Adv Catal 37:101–163

    CAS  Google Scholar 

  33. Deutschmann O, Maier LI, Riedel U, Stroemman AH, Dibble RW (2000) Catal Today 59:141–150

    Article  CAS  Google Scholar 

  34. Ljungström S, Kasemo B, Rosen A, Wahnström T, Fridell E (1989) Surf Sci 216:63–92

    Article  Google Scholar 

  35. Hellsing B, Kasemo B, Ljungström S, Rosén A, Wahnström T (1987) Surf Sci 189–190:851–860

    Article  Google Scholar 

  36. Zhdanov VP, Kasemo B (1994) Surf Sci Rep 20:113–189

    Article  Google Scholar 

  37. Poelsema B, Mechtersheimer G, Comsa G (1981) Surf Sci 111:519–544

    Article  CAS  Google Scholar 

  38. Rinnemo M, Deutschmann O, Behrendt F, Kasemo B (1997) Combust Flame 111:312–326

    Article  CAS  Google Scholar 

  39. Campbell CT, Ertl G, Kuipers H, Segner J (1981) Surf Sci 107:207–219

    Article  CAS  Google Scholar 

  40. Parker DH, Bartram ME, Koel BE (1989) Surf Sci 217:489–510

    Article  CAS  Google Scholar 

  41. Holmgren A, Duprez D, Andersson B (1999) J Catal 182:441–448

    Article  CAS  Google Scholar 

  42. Ehsasi MM, Rezaie-Serej S, Block JH, Christmann K (1990) J Chem Phys 92:7596–7609

    Article  CAS  Google Scholar 

  43. McCabe RW, Schmidt LD (1977) Surf Sci 65:189–209

    Article  CAS  Google Scholar 

  44. Zeigarnik AV, Callaghan C, Datta R, Fishtik I, Shustorovich E (2005) Kinet Catal 46:509–515

    Article  CAS  Google Scholar 

  45. Zerkle DK, Allendorf MD, Wolf M, Deutschmann O (2000) J Catal 196:18–39

    Article  CAS  Google Scholar 

  46. Nibbelke RH, Campman MAJ, Hoebink JHBJ, Marin GB (1997) J Catal 171:358–373

    Article  CAS  Google Scholar 

  47. Fisher GB, Gland JL (1980) Surf Sci 94:446–455

    Article  CAS  Google Scholar 

  48. Pacia N, Cassuto A, Pentenero A, Weber B (1976) J Catal 41:455–465

    Article  CAS  Google Scholar 

  49. Zafiris GS, Gorte RJ (1993) J Catal 140:418–423

    Article  CAS  Google Scholar 

  50. Hickman DA, Schmidt LD (1993) AIChE J 39:1164–1177

    Article  CAS  Google Scholar 

  51. Anton AB, Cadogan DC (1991) J Vac Sci Technol A 9:1890–1897

    Article  CAS  Google Scholar 

  52. Deutschmann O, Schmidt R, Behrendt F, Warnat J (1996) Sympos (Int) Combust 26:1747–1754

    Article  Google Scholar 

  53. Williams WR, Marks CM, Schmidt LD (1992) J Phys Chem 96:5922–5931

    Article  CAS  Google Scholar 

  54. Torkashvand B, Maier L, Hettel M, Schedlbauer T, Grunwaldt J-D, Deutschmann O (2018) Chem Eng Sci. https://doi.org/10.1016/j.ces.2018.10.031

    Article  Google Scholar 

Download references

Acknowledgements

We very much appreciate fruitful discussions with Maria Casapu (KIT). We also gratefully thank the German Research Association for Combustion Engines e.V. (FVV) for funding the project “Formaldehyde” (Project-No. 1187) chaired by Heinrich Baas. The authors also thank Steinbeis GmbH & Co. KG für Technologietransfer (STZ 240 Reaktive Strömungen) for a cost free license of DETCHEM™.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Deutschmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 72 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torkashvand, B., Maier, L., Lott, P. et al. Formaldehyde Oxidation Over Platinum: On the Kinetics Relevant to Exhaust Conditions of Lean-Burn Natural Gas Engines. Top Catal 62, 206–213 (2019). https://doi.org/10.1007/s11244-018-1087-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1087-y

Keywords

Navigation