Skip to main content
Log in

Insights into the Reaction Mechanism of Catalytic Wet Air Oxidation of Ammonia Over Bimetallic Ru–Cu Catalyst

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The mechanism for catalytic wet air oxidation (CWAO) of ammonia to N2 over Ru–Cu/C catalyst is extensively studied by altering the initial pH, reaction temperature and atmosphere. It is found that N2 formation can be from the catalytically selective oxidation of ammonia or the disproportionation reaction between NH4+ and NO2. The initial oxidation of ammonia determines the reaction mechanism, the evolution of pH and the distribution of various nitrogen species. Over-oxidation to nitrous acid lowers the pH of the solution due to dissociation of HNO2 to H+ and NO2. With the decrease of pH, the concentration of NH4+ is increased and rapidly reacts with NO2 to form N2. The relatively lower pH also makes some nitrites be oxidized to NO3. Enhancing the reaction of selective oxidation of ammonia to N2 increases the selectivity to N2 while limits the pH decrease and NO3 formation, since NO2 is more dominant to HNO2 at high pH and hardly oxidized to NO3. The reaction temperature is one key factor to determine the reaction mechanism of CWAO of ammonia.

Graphical Abstarct

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Verstraete W, Philips S (1998) Environ Pollut 102:717–726

    Article  CAS  Google Scholar 

  2. Dongen van U, Jetten M, Van Loosdrecht M (2001) Water Sci Technol 44:153–160

    Article  PubMed  Google Scholar 

  3. Huang TL, MacInnes JM, Cliffe KR (2001) Water Res 35:2113–2120

    Article  CAS  PubMed  Google Scholar 

  4. Chen JP, Chua ML, Zhang B (2002) Waste Manag 22:711–719

    Article  CAS  PubMed  Google Scholar 

  5. Rožić M, Cerjan-Stefanović Š, Kurajica S, Vančina V, Hodžić E (2000) Water Res 34:3675–3681

    Article  Google Scholar 

  6. Radnik J, Benhmid A, Kalevaru VN, Pohl MM, Martin A, Lücke B, Dingerdissen U (2005) Angew Chem Int Ed 44:6771–6774

    Article  CAS  Google Scholar 

  7. Taguchi J, Okuhara T (2000) Appl Catal A 194–195:89–97

    Article  Google Scholar 

  8. Bernardi M, Le DM, Dodouche I, Descorme C, Deleris S, Blanchet E, Besson M (2012) Appl Catal B 128:64–71

    Article  CAS  Google Scholar 

  9. Cao SL, Chen GH, Hu XJ, Yue PL (2003) Catal Today 88:37–47

    Article  CAS  Google Scholar 

  10. Lousteau C, Besson M, Descorme C (2015) Catal Today 241:80–85

    Article  CAS  Google Scholar 

  11. Li Y, Zhang R, Li HS, Dong M (2005) Chem J Chin 26:430–435

    Google Scholar 

  12. Takayama H, Qin JY, Inazu K, Aika K (1999) Chem. Lett 28:377–378

    Article  Google Scholar 

  13. Hung CM, Lou JC, Lin CH (2003) Chemosphere 52:989–995

    Article  CAS  PubMed  Google Scholar 

  14. Hung CM (2009) Environ Eng Sci 26:351–358

    Article  CAS  Google Scholar 

  15. Hung CM (2009) J Hazard Mater 166:1314–1320

    Article  CAS  PubMed  Google Scholar 

  16. Hung CM (2009) J Hazard Mater 163:180–186

    Article  CAS  PubMed  Google Scholar 

  17. Kaewpuang NS, Inazu K, Kobayashi T, Aika KI (2004) Water Res 38:778–782

    Article  CAS  Google Scholar 

  18. Qin J, Aika K (1998) Appl Catal B 16:261–268

    Article  CAS  Google Scholar 

  19. Webley PA, Tester JW, Holgate HR (1991) Ind Eng Chem Res 30:1745–1754

    Article  CAS  Google Scholar 

  20. Barbier JJ, Oliviero L, Renard B, Duprez D (2002) Catal Today 75:29–34

    Article  CAS  Google Scholar 

  21. Lee DK (2003) Environ Sci Technol 37:5745–5749

    Article  CAS  PubMed  Google Scholar 

  22. Lee DK, Cho JS, Yoon WL (2005) Chemosphere 61:573–578

    Article  CAS  PubMed  Google Scholar 

  23. Fu J, Yang K, Ma C, Zhang N, Gai H, Zheng J, Chen BH (2016) Appl Catal B 184:216–222

    Article  CAS  Google Scholar 

  24. Wang Z, Hameed S, Wen Y, Zhang N, Gai H, Zheng J, Chen BH (2017) Sci Rep 7:3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial supports from the National Key Technology Support Program of China (2014BAC10B01). Prof Dr Gai would like to thank the support from key scientific and technological project of China’s Shanxi Province (MH2014-10). The support by the Natural Science Foundation of Fujian Province of China (2015J05031) and the Natural Science Foundation of China (21673187) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nuowei Zhang or Bing H. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Xiao, D., Yue, Q. et al. Insights into the Reaction Mechanism of Catalytic Wet Air Oxidation of Ammonia Over Bimetallic Ru–Cu Catalyst. Top Catal 61, 1684–1693 (2018). https://doi.org/10.1007/s11244-018-1019-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1019-x

Keywords

Navigation