Skip to main content
Log in

A Review on the Recent Advances in the Reductions of Carbon–Carbon/Oxygen Multiple Bonds Including Aromatic Rings Using Raney Ni–Al Alloy or Al Powder in the Presence of Noble Metal Catalysts in Water

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Over the past few years, heterogeneous catalysts have attracted much attention with a view to lowering reaction temperatures and improving the selectivity of many organic syntheses. When it comes to designing or optimizing a catalyst, a lot of attention is needed to be devoted to the nature of the active sites and how they interact with the reactants, intermediates and products of the catalytic process. To this end, Raney Ni–Al alloy and noble metal catalysts such as Ru/C, Rh/C, Pd/C and Pt/C turn out to be very effective in both selective and complete reductions of various functional groups as well as aromatic rings in water. Moreover, Al powder coupled with a noble metal catalyst has been found to be capable of reducing carbonyl group, an alkyne moiety and also the aromatic rings of biphenyl, fluorene, 9,10-dihydroanthracene, polyarenes and N-heterocycles in water under mild reaction conditions. So this review offers an overview on the most recent developments especially in this particular methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 3
Scheme 8
Fig. 4
Fig. 5
Scheme 9

Similar content being viewed by others

References

  1. Török B, Dransfield T (eds) (2018) Green chemistry: an inclusive approach. Elsevier, New York

    Google Scholar 

  2. Li C (2012) Hand book of green chemistry-green processes, vol. 7 Green synthesis. Wiley, Weinheim

    Google Scholar 

  3. Shigeo N (2001) Hand book of heterogeneous catalytic hydrogenation for organic synthesis. Wiley, Hoboken

    Google Scholar 

  4. Maxed EB, Moon KL, Overgage E (1950) Disc Faraday Soc 8:135

    Article  Google Scholar 

  5. Ellis C (1930) Hydrogenation of organic substances, 3rd edn. Van Nostrand, New York, pp 112–156

    Google Scholar 

  6. Sabatier P, Senderens J-B (1905) Ann Chim Phys 4(8):319

    Google Scholar 

  7. Senderens J-B, Aboulenc J (1912) Bull Soc Chim Fr 11(4):641

    CAS  Google Scholar 

  8. Sabatier P, Espil L (1914) Bull Soc Chim Fr 159(4):779

    Google Scholar 

  9. Benton AF, Emmett PH (1924) J Am Chem Soc 46:2728

    Article  CAS  Google Scholar 

  10. Ellis C (1930) Hydrogenation of organic substances, 3rd edn. Van Nostrand, New York, p 115

    Google Scholar 

  11. Kelber C (1916) Ber Dtsch Chem Ges 49:55

    Article  CAS  Google Scholar 

  12. Armstrong EF, Hilditch TP (1921) Proc Roy Soc A 99:490

    Article  CAS  Google Scholar 

  13. Gauger AW, Taylor HS (1923) J Am Chem Soc 45:920

    Article  CAS  Google Scholar 

  14. Adkins H, Cramer HI (1930) J Am Chem Soc 52:4349

    Article  CAS  Google Scholar 

  15. Adkins H, Covert LW (1931) J Phys Chem 35:1684

    Article  CAS  Google Scholar 

  16. Covert LW, Connor R, Adkins H (1932) J Am Chem Soc 54:1651

    Article  CAS  Google Scholar 

  17. Dean JG (1952) Ind Eng Chem Soc 44:985

    Article  Google Scholar 

  18. Balandin AA, Grigoryan ES, Yanysheva ZS (1940) Acta Physicochim URSS 12:737

    CAS  Google Scholar 

  19. Bircumshaw LL, Edwards J (1950) J Chem Soc 1950:1800

    Article  Google Scholar 

  20. Sasa T (1953) J Soc Org Synth Chem 11:463

    Article  CAS  Google Scholar 

  21. Wurster OH (1940) Ind Eng Chem 32:1193

    Article  CAS  Google Scholar 

  22. Ellis C (1924) US Pat 1 482, 740

  23. Cornubert R, Borrel C (1930) Bull Soc Chim Fr 47(4):301

    CAS  Google Scholar 

  24. Raney M (1940) Ind Eng Chem 32:1199

    Article  CAS  Google Scholar 

  25. Schroter R (1941) Angew Chem 54:229

    Article  CAS  Google Scholar 

  26. Lieber E, Morritz FL (1953) Adv Catal 15:417

    Google Scholar 

  27. Hata K, Urushibara Y (1971) Catalysts. University of Tokyo Press, Tokyo

    Google Scholar 

  28. Urushibara Y, Nishimura S (1954) Bull Chem Soc Jpn 27:480

    Article  CAS  Google Scholar 

  29. Urushibara Y, Nishimura S, Uehara H (1955) Bull Chem Soc Jpn 28:446

    Article  CAS  Google Scholar 

  30. Urushibara Y, Kobayashi M, Nishimura S, Uehara H (1956) Shyokubai 12:107

    Google Scholar 

  31. Jacob I, Fisher M, Hadari Z, Herskowitz M, Wisniak J, Shamir N, Mintz MH (1986) J Catal 101:28

    Article  CAS  Google Scholar 

  32. Paul R, Buisson P, Joseph N (1952) Ind Eng Chem 44:1006

    Article  CAS  Google Scholar 

  33. Mochalov KN, Tremasov NV, Shifrin KVT (1964) Kazansk Khim-Technol Inst 33:95

    Google Scholar 

  34. Brown CA (1970) J Org Chem 35:1900

    Article  CAS  Google Scholar 

  35. Anderson RB (1956) In: Emmett PH (ed) Catalysis, vol 4. Reinhold, New York, p 29

    Google Scholar 

  36. Long JH, Frazer JCW, Ott E (1934) J Am Chem Soc 56:1101

    Article  CAS  Google Scholar 

  37. Emmett PH, Skau N (1943) J Am Chem Soc 65:1029

    Article  CAS  Google Scholar 

  38. Nishimura S, Kawashima M, Inoue S, Takeoka S, Shimizu M, Takagi Y (1991) Appl Catal 76:19

    Article  CAS  Google Scholar 

  39. Huttig GF, Kassler RZ (1930) Anorg Allgem Chem 187:24

    Article  CAS  Google Scholar 

  40. Winas CF (1940) Ind Eng Chem 32:1215

    Article  Google Scholar 

  41. Faucounau L (1937) Bull Soc Chem Fr 4(5):63

    Google Scholar 

  42. Dupont G, Piganiol P (1939) Bull Soc Chim Fr 6(5):322

    CAS  Google Scholar 

  43. Signaigo FK (1939) US Pat, 2:166183

  44. Polkovnikov BD, Freidlin LK, Balandin AA (1959) Izv Akad Nauk SSSR Otde Khim Nauk, p 1488

  45. Barnet C (1969) Ind Eng Chem Prod Res Dev 8:145

    Article  Google Scholar 

  46. Saito S (1956) J Pharm Soc Jpn 76:351

    Article  CAS  Google Scholar 

  47. Nishimura S, Sugimori A (1960) Nippon Kagaku Zasshi 81:314

    Article  CAS  Google Scholar 

  48. Sabatier P, Kubota B (1921) Compt Rend 172:733

    CAS  Google Scholar 

  49. Sabatier P, Senderens J-B (1905) Ann Chim Phys 4(8):368

    Google Scholar 

  50. Pease RN, Purdum RB (1925) J Am Chem Soc 47:1435

    Article  CAS  Google Scholar 

  51. Ipatieff VN, Corson BB, Kurbatov ID (1939) J Phys Chem 43:589

    Article  CAS  Google Scholar 

  52. Sabatier P, Senderens J-B (1901) Compt Rend 133321

    Google Scholar 

  53. Sabatier P, Senderens J-B (1902) Compt Rend 135:225

    Google Scholar 

  54. Rihani DN, Narayanan TK, Doraiswamy LK (1965) Ind Eng Chem Proc Res Dev 4:403

    Article  CAS  Google Scholar 

  55. Paul R, Hilly G (1939) Bull Soc Chim Fr 6(5):218

    CAS  Google Scholar 

  56. Thompson AF Jr, Wyatt SB (1940) J Am Chem Soc 62:2555

    Article  CAS  Google Scholar 

  57. Reppe W et al (1955) Justus Liebigs Ann Chem 596:38

    Article  CAS  Google Scholar 

  58. Taira S (1962) Bull Chem Soc Jpn 35:840

    Article  Google Scholar 

  59. Debus H (1863) Justus Liebigs Ann Chem 128:200

    Article  Google Scholar 

  60. Ellis C (1930) Hydrogenation of organic substances, 3rd edn. Van Nostrand, New York, p 1

    Google Scholar 

  61. Willstatter R, Hatt D (1912) Ber Dtsch Chem Ges 45:1471

    Article  Google Scholar 

  62. Willstatter R, Mayer EW (1908) Ber Dtsch Chem Ges 41:1475

    Article  CAS  Google Scholar 

  63. Skita A, Meyer WA (1912) Ber Dtsch Chem Ges 45:3589

    Article  Google Scholar 

  64. Broadbent HS (1967) Ann NY Acad Sci 145:58

    Article  CAS  Google Scholar 

  65. Broadbent HS, Slaugh LH, Jarvis NL (1954) J Am Chem Soc 76:1519–1523

    Article  CAS  Google Scholar 

  66. Ciapetta FG, Wallace DN (1971) Catal Rev 5:67

    Article  CAS  Google Scholar 

  67. Satterfield CN (1980) Heterogeneous catalysis in practice. McGraw-Hill, New York, pp 259–265

    Google Scholar 

  68. Shono S, Itabashi K, Yamada M, Kikuchi M (1961) Kogyo Kagaku Zasshi 64:1357

    Article  CAS  Google Scholar 

  69. Greenfield H (1967) Ann NY Acad Sci 145:108

    Article  CAS  Google Scholar 

  70. Anastas PT, Warner JC (1998) Green chemistry, theory and practice. Oxford University Press, New York

    Google Scholar 

  71. Li C-H, Chan T-H (1997) Organic reactions in aqueous media. Wiley, New York, pp 13–189

    Google Scholar 

  72. Lubineau A, Auge J, Queneau Y (1994) Synthesis 1994:741–760

    Article  Google Scholar 

  73. Li C-J (1993) Chem Rev 93:2023–2035

    Article  CAS  Google Scholar 

  74. Schäfer C, Ellstrom CJ, Cho H, Török (2017) Green Chem 19:1230–1234

    Article  Google Scholar 

  75. Subbotina E, Galkin MV, Samec JSM (2017) ACS Sustain Chem Eng 5:3726–3731

    Article  CAS  Google Scholar 

  76. Cummings SP, Le T-N, Fernandez GE, Quiambao LG, Stokes BJ (2016) J Am Chem Soc 138:6107–6110

    Article  CAS  PubMed  Google Scholar 

  77. Cho H, Schäfer C, Török B (2016) Curr Org Synth 13:255–277

    Article  CAS  Google Scholar 

  78. Yamamura S, Nishiyama S (1991) In: Trost BM, Fleming I (eds) Comprehensive organic synthesis, Chap. 1.13, vol 8. Pergamon Press, Oxford

    Google Scholar 

  79. Hutchins RO, Hutchins MK (1991) In: Trost BM, Fleming I (eds) Comprehensive organic synthesis, Chap. 1.14, vol 8. Pergamon Press, Oxford

    Google Scholar 

  80. Nakabayashi T (1960) J Am Chem Soc 82:3900–3906

    Article  CAS  Google Scholar 

  81. Nakabayashi T (1960) J Am Chem Soc 82:3906–3908

    Article  Google Scholar 

  82. Nakabayashi T (1960) J Am Chem Soc 82:3909–3913

    Article  Google Scholar 

  83. Huang M (1946) J Am Chem Soc 68:2487–2488

    Article  CAS  Google Scholar 

  84. Szmant HH, Harmuth CM (1964) J Am Chem Soc 86:2909–2914

    Article  CAS  Google Scholar 

  85. Hicks LD, Han JK, Fry AJ (2000) Tetrahedron Lett 41:7817–7820

    Article  CAS  Google Scholar 

  86. Hatano B, Tagaya H (2003) Tetrahedron Lett 44:6331–6333

    Article  CAS  Google Scholar 

  87. Reziq RA, Avnir D, Blum J (2002) J Mol Cat A 187:277–281

    Article  Google Scholar 

  88. Reziq RA, Avnir D, Blum J (2002) Angew Chem Int Ed 41:4132–4134

    Article  Google Scholar 

  89. Kogan V, Aizenshtat Z, Neumann R (2002) New J Chem 26:272–274

    Article  CAS  Google Scholar 

  90. Heilmann SM, Rasmussen JK, Smith IIHK (1983) J Org Chem 48:987–992

    Article  CAS  Google Scholar 

  91. Jenkins SS, Buck JS, Bigelow LA (1930) J Am Chem Soc 52:4495–4499

    Article  CAS  Google Scholar 

  92. Murata K, Okano K, Miyagi M, Iwane H, Noyori R, Ikariya T (1999) Org Lett 1:1119–1121

    Article  CAS  Google Scholar 

  93. Stapelfeldt HE, Perone SP (1969) Anal Chem 41:623–627

    Article  CAS  Google Scholar 

  94. Buisson D, Baba SE, Azerad R (1986) Tetrahedron Lett 27:4453–4454

    Article  CAS  Google Scholar 

  95. Schäfer C, Nişanci B, Bere MP, Daştan A, Török B (2016) Synthesis 48:3127–3133

    Article  CAS  Google Scholar 

  96. Ishimoto K, Mitoma Y, Nagashima S, Tashiro H, Prakash GKS, Olah GA, Tashiro M (2003) Chem Commun. https://doi.org/10.1039/B211571A

    Article  Google Scholar 

  97. Miyazawa A, Tashiro M, Prakash GKS, Olah GA (2006) Bull Chem Soc Jpn 79:791–792

    Article  CAS  Google Scholar 

  98. Hashimoto I, Suzuki H, Ishimoto K, Tashiro H, Prakash GKS, Olah GA, Tashiro M (2006) Jpn J Deuterium Sci 12:39–44

    CAS  Google Scholar 

  99. Simion A-M, Arimura T, Simion C (2013) Compt Rend Chim 16:476–481

    Article  CAS  Google Scholar 

  100. Ma X, Zhou S, Yang C, Liu S, Bi X, Xia C (2010) Catal Commun 12:282–285

    Article  CAS  Google Scholar 

  101. Fujiwara Y, Iwasaki Y, Maegawa T, Monguchi Y, Sajiki H (2011) Chem Cat Chem 3:1624–1628

    CAS  Google Scholar 

  102. Shi L, Liu Y, Liu Q, Wei B, Zhang G (2012) Green Chem 14:1372–1375

    Article  CAS  Google Scholar 

  103. Prakash GKS, Do C, Mathew T, Olah GA (2011) Catal Lett 141:507–511

    Article  CAS  Google Scholar 

  104. Liu G-B, Zhao H-Y, Zhu J-D, He H-J, Yang H-J, Thiemann T, Tashiro H, Tashiro M (2008) Synth Commun 38:1651–1661

    Article  CAS  Google Scholar 

  105. Rayhan U, Do J-H, Arimura T, Yamato T (2015) Compt Rend Chim 18:685–692

    Article  CAS  Google Scholar 

  106. Niu M, Wang Y, Li W, Jiang J, Jin Z (2013) Catal Commun 38:77–81

    Article  CAS  Google Scholar 

  107. López N, Vargas-Fuentes C (2012) Chem Commun 48:1379–1391

    Article  Google Scholar 

  108. Feng Q, Zhao S, Wang Y, Dong J, Chen W, He D, Wang D, Yang J, Zhu Y, Zhu H, Gu L, Li Z, Liu Y, Yu R, Li J, Li Y (2017) J Am Chem Soc 139:7294–7301

    Article  CAS  PubMed  Google Scholar 

  109. Mäsing F, Nüsse H, Klingauf J, Studer A (2017) Org Lett 19:2658–2661

    Article  CAS  PubMed  Google Scholar 

  110. Guo S, Zhou J (2016) Org Lett 18:5344–5347

    Article  CAS  PubMed  Google Scholar 

  111. Arman SAV, Zimmet AJ, Murray IE (2016) J Org Chem 81:3528–3532

    Article  CAS  PubMed  Google Scholar 

  112. Zhou Q, Zhang L, Meng W, Feng X, Yang J, Du H (2016) Org Lett 18:5189–5191

    Article  CAS  PubMed  Google Scholar 

  113. Whittaker AM, Lalic G (2013) Org Lett 15:1112–1115

    Article  CAS  PubMed  Google Scholar 

  114. Fedorov A, Liu H-J, Lo H-K, Copéret C (2016) J Am Chem Soc 138:16502–16507

    Article  CAS  PubMed  Google Scholar 

  115. Tokmic K, Fout AR (2016) J Am Chem Soc 38:13700–13705

    Article  CAS  Google Scholar 

  116. Xiang S-C, Zhang Z, Zhao C-G, Hong K, Zhao X, Ding D-R, Xie M-H, Wu C-D, Das MC, Gill R, Thomas KM, Chen B (2011) Nat Commun 2:204

    Article  CAS  PubMed  Google Scholar 

  117. Nijem N, Wu H, Canepa P, Marti A, Balkus KJ, Thonhauser T, Li J, Chabal YJ (2012) J Am Chem Soc 134:15201–15204

    Article  CAS  PubMed  Google Scholar 

  118. Hu T-L, Wang H, Li B, Krishna R, Wu H, Zhou W, Zhao Y, Han Y, Wang X, Zhu W, Yao Z, Xiang S, Chen B (2015) Nat Commun 6:7328

    Article  CAS  PubMed  Google Scholar 

  119. He Y, Zhang Z, Xiang S, Fronczek FR, Krishna R, Chen B (2012) Chem Eur J 18:613–619

    Article  CAS  PubMed  Google Scholar 

  120. Sunada Y, Ogushi H, Yamamoto T, Uto S, Sawano M, Tahara A, Tanaka H, Shiota Y, Yoshizawa T, Nagashima H (2018) J Am Chem Soc 140(11):4119–4134

    Article  CAS  PubMed  Google Scholar 

  121. Camacho BJ, Ferrandon M, Sohn H, Yang D, Liu C, Leon PAI, Perras FA, Pruski M, Stair PC, Delferro M (2018) J Am Chem Soc 140(11):3940–3951

    Article  CAS  Google Scholar 

  122. Sabatier P, Senderens JB (1899) Compt Rend 128:1173

    CAS  Google Scholar 

  123. Sabatier PL (1922) Catalyse en Chimie Organique catalysis in organic chemistry (translated by Reid EE). Van Norstrand, Princeton, p 923

    Google Scholar 

  124. Press RJ, Santhanam KSV, Miri MJ, Bailey AV, Takacs GA (2009) Introduction to hydrogen technology, Chapter 4.1. Wiley, Hoboken, pp 195–210

    Google Scholar 

  125. Smith HA (1957) In Emmett PH (ed) Catalysis, vol 5. Reinhold, New York, pp 179–181

    Google Scholar 

  126. Adkins H (1937) Reactions of hydrogen with organic compounds over copper-chromium oxide and nickel catalysts, University of Wisconsin Press, Madison, pp 56–62

    Google Scholar 

  127. Akhmedli MK (1947) Obshch Khim Zh 17:224–230

    CAS  Google Scholar 

  128. Akhmedli MK (1949) Obshch Khim Zh 19:462–467

    CAS  Google Scholar 

  129. Adams R, Marshall JR (1928) J Am Chem Soc 50:1970–1973

    Article  CAS  Google Scholar 

  130. Gilman G, Cohn G (1957) Adv Catal 9:733–742

    Google Scholar 

  131. Rylander PN (1967) Catalytic hydrogenation over platinum metals. Academic Press, New York p 309

    Book  Google Scholar 

  132. Lyle RE, Thomas JJ (1965) J Org Chem 30:1907–1909

    Article  CAS  Google Scholar 

  133. Gribble GW, Lord PD, Skotnicki J, Dietz SE, Eaton JT, Johnson J (1974) J Am Chem Soc 96:7812–7813

    Article  CAS  Google Scholar 

  134. Yalpani M, Lunow T, Koester R (1989) Chem Ber 122:687–693

    Article  CAS  Google Scholar 

  135. Yalpani M (1990) Chem Ber 123:983–987

    Article  CAS  Google Scholar 

  136. Benkeser RA, Robinson RE, Sauve DM, Thomas OH (1955) J Am Chem Soc 77:3230–3233

    Article  CAS  Google Scholar 

  137. Marcinow Z, Rabideau PW (1999) J Org Chem 55:3812–3816

    Article  Google Scholar 

  138. Rylander PN (1979) Catalytic hydrogenation in organic synthesis. Academic Press, New York, p 175

    Book  Google Scholar 

  139. Nishimura S (2001) Handbook of heterogenious catalytic hydrogenation for organic synthesis. Wiley, New York, p 414

    Google Scholar 

  140. Tsukinoki T, Kanda T, Liu G-B, Tsuzuki H, Tashiro M (2000) Tetrahedron Lett 41:5865–5868

    Article  CAS  Google Scholar 

  141. Liu G-B, Tashiro M, Thiemann T (2009) Tetrahedron 65:2497–2505

    Article  CAS  Google Scholar 

  142. Liu G-B, Zhao H-Y, Dai L, Thiemann T, Tashiro H, Tashiro M (2009) J Chem Res 2009:79–581

    Google Scholar 

  143. Tomin A, Lazarev A, Bere MP, Redjeb H, Török B (2012) Org Biomol Chem 10:7321–7326

    Article  CAS  PubMed  Google Scholar 

  144. Cho H, Török F, Török B (2013) Org Biomol Chem 11:1209–1215

    Article  CAS  PubMed  Google Scholar 

  145. Suzuki H, Ishimoto K, Tashiro H, Tashiro M, Udagawa J, Prakash GKS, Olah GA (2006) Jpn J Deuterium Sci 12(1):45–47

    CAS  Google Scholar 

  146. Daştan A, Kulkarni A, Török B (2012) Green Chem 14:17–37

    Article  Google Scholar 

  147. Bag S, Dasgupta S, Török B (2011) Curr Org Synth 8:237–261

    Article  CAS  Google Scholar 

  148. Wang Y, Huang Z, Leng X, Zhu H, Liu G, Huang Z (2018) J Am Chem Soc 140(12):4417–4429

    Article  CAS  PubMed  Google Scholar 

  149. Rayhan U, Kowser Z, Islam Md N, Redshaw C, Yamato T (2018) Arkivoc 2018:241–251

    Article  CAS  Google Scholar 

  150. Miyazawa A, Tanaka K, Sakakura T, Tashiro M, Tashiro H, Prakash GKS, Olah GA (2005) Chem Commun 2005:2104–2106

    Article  CAS  Google Scholar 

  151. Miyajawa A, Saitou K, Tanaka K, Gädda TM, Tashiro M, Prakash GKS, Olah GA (2006) Tetrahedron Lett 47:1437–1439

    Article  CAS  Google Scholar 

  152. Suzuki H, Tashiro H, Ishimoto K, Prakash GKS, Olah GA, Tashiro M (2006) Jpn J Deuterium Sci 12(1):19–37

    CAS  Google Scholar 

  153. Rayhan U, Kwon H, Yamato T (2014) Compt Rend Chimie 17:952–957

    Article  CAS  Google Scholar 

  154. Rayhan U, Kowser Z, Redshaw C, Yamato T (2016) Tetrahedron 72:6943–6947

    Article  CAS  Google Scholar 

  155. Suzuki H, Ishimoto K, Tashiro H, Prakash GKS, Olah GA, Tashiro M (2006) Jpn J Deuterium Sci 12(1):7–18

    CAS  Google Scholar 

  156. Tsukinki T, Mitoma Y, Nagashima S, Kawaji T, Hashimoto I, Tashiro M (1998) Tetrahedron Lett 39:8873–8876

    Article  Google Scholar 

  157. Tsukinki T, Nagashima S, Mitoma Y, Tashiro M (2000) Green Chem 2:117–119

    Article  Google Scholar 

  158. Mitoma Y, Hashimoto I, Simion C, Tashiro M, Egashira N (2008) Synth Commun 38:3242–3250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted under the Cooperative Research Program of “Network Joint Research Center for Materials and Devices (Institute for Materials Chemistry and Engineering, Kyushu University)”. CR thanks the EPSRC for an Overseas Travel Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Yamato.

Additional information

Dedicated to Prof. George A. Olah Memorial Issue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rayhan, U., Kowser, Z., Islam, M.N. et al. A Review on the Recent Advances in the Reductions of Carbon–Carbon/Oxygen Multiple Bonds Including Aromatic Rings Using Raney Ni–Al Alloy or Al Powder in the Presence of Noble Metal Catalysts in Water. Top Catal 61, 560–574 (2018). https://doi.org/10.1007/s11244-018-0994-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0994-2

Keywords

Navigation