Skip to main content

Advertisement

Log in

Reaction and Diffusion Paths of Water and Hydrogen on Rh Covered Black Titania

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The reactions of H2O, H2 D2 and CO with clean and rhodium covered black titania have been investigated by TDS, AES and sensitive temperature programmed work function (TP-WF) measurements to elucidate the complex interactions with this narrow bandgap material promising for visible light energy harvesting. Water formed molecular and dissociative adsorption states with positive outward dipole moments on the reduced, r–TiO2 (110). Surface hydroxyl groups decomposed to H2 and recombined to H2O in a broad temperature range, characterized by TDS peaks at 300, 355–377 and 470 K, which has been associated with surface inhomogeneity. On a strongly reduced, sr–TiO2 (110), a part of H atoms arising from OHa species dissolved in the titania at 200–500 K, and desorbed as H2O with Tp = 570, 670 and 750 K. Sub-monolayer TiOx films produced by stepwise heating on r–TiO2 (110) supported Rh particles suppressed the adsorption of hydrogen, but allowed its spillover to the support. Co-adsorption experiments with D2, H2, H2O and CO on the Rh covered r–TiO2 (110) were also performed. Saturating the Rh by CO at 330 K blocked the uptake of hydrogen on the metal, eliminating its spillover to the support. At 270 K saturation CO exposure removed the pre-adsorbed hydrogen, while at 200 K replaced a part of it decreasing the adsorption bond energy of the rest remained adsorbed. Co-adsorption data proved that the hydrogen desorption states with Tp = 470 and 570 K belong to the decomposition of hydroxyl groups on the r–TiO2 (110) support and at the Rh–TiOx interface, respectively. It is remarkable that the latter state can evolve in the presence of adsorbed CO, which exhibits reactivity towards the same interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pang CL, Lindsay R, Thornton G (2013) Chem Rev 113:3887–3948

    Article  CAS  PubMed  Google Scholar 

  2. Chen X, Liu L, Yu PY, Mao SS (2011) Science 331:746

    Article  CAS  PubMed  Google Scholar 

  3. Liu X, Zhu G, Wang X, Yuan X, Lin T, Huang F (2016) Adv Energy Mater 1600452

  4. Fujiwara K, Deligiannakis Y, Skoutelis CG, Pratsinis SE (2014) Appl Catal B - Environ 154–155 9–15

  5. Prins R (2012) Chem Rev 112:2714–2738

    Article  CAS  PubMed  Google Scholar 

  6. Zhu Y, Liu D, Meng M (2014) Chem Commun 50:6049

    Article  CAS  Google Scholar 

  7. Mor GK, Varghese OK, Paulose M, Ong KG, Grimes CA (2006) Thin Solid Films 496:42

    Article  CAS  Google Scholar 

  8. Rather S, Mehraj-ud-din Z, Zacharia R, Hwang SW, Kim AR, Nahm KS (2009) Int J Hydrog Energy 34:961–966

    Article  CAS  Google Scholar 

  9. Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Pérez M (2007) Science 318:1757

    Article  CAS  PubMed  Google Scholar 

  10. Yin X-L, Calatayud M, Qiu H, Wang Y, Birkner A, Minot C, Wöll Ch (2008) Chem Phys Chem 9:253–256

    Article  CAS  PubMed  Google Scholar 

  11. Du Y, Petrik NG, Deskins NA, Wang Z, Henderson MA, Kimmelb GA, Lyubinetsky I (2012) Phys Chem Chem Phys 14:3066–3074

    Article  CAS  PubMed  Google Scholar 

  12. Surnev S, Fortunelly A, Netzer FP (2013) Chem Rev 113:4314–4372

    Article  CAS  PubMed  Google Scholar 

  13. Bugyi L, Óvári L, Kónya Z (2013) Appl Surf Sci 280:60–66

    Article  CAS  Google Scholar 

  14. Bugyi L, Szenti I, Kónya Z (2014) Appl Surf Sci 313:432–439

    Article  CAS  Google Scholar 

  15. Szenti I, Bugyi L, Kónya Z (2017) Surf Sci 657:1–9

    Article  CAS  Google Scholar 

  16. Livneh T, Lilach Y, Asscher M (1999) J Chem Phys 111:11138

    Article  CAS  Google Scholar 

  17. Bugyi L, Nemeth R (2011) Surf Sci 605:808

    Article  CAS  Google Scholar 

  18. Henderson MA (1996) Langmuir 12:5093–5098

    Article  CAS  Google Scholar 

  19. Schaub R, Thostrup P, Lopez N, Lægsgaard E, Stensgaard I, Nørskov JK, Besenbacher F (2001) Phys Rev Lett 87:266104

    Article  CAS  PubMed  Google Scholar 

  20. Hugenschmidt MB, Gamble L, Campbell CT (1994) Surf Sci 302:329

    Article  CAS  Google Scholar 

  21. Ketteler G, Yamamoto S, Bluhm H, Andersson K, Starr DE, Ogletree DF, Nilsson HOgasawara,A, Salmeron M (2007) J Phys Chem C 111:8278–8282

    Article  CAS  Google Scholar 

  22. Raupp GB, Dumesic JA (1985) J Phys Chem 89:5240

    Article  CAS  Google Scholar 

  23. Bugyi L, Berkó A, Óvári L, Kiss AM (2008) J Kiss Surf Sci 602:1650

    Article  CAS  Google Scholar 

  24. Yang Y, Sushchikh M, Mills G, Metiu H, McFarland E (2004) Appl Surf Sci 229:346–351

    Article  CAS  Google Scholar 

  25. Henderson MA (1999) Surf Sci 419:174

    Article  CAS  Google Scholar 

  26. Marques HP, Canário AR, Moutinho AMC, Teodoro OMND. (2009) Appl Surf Sci 255:7389–7393

    Article  CAS  Google Scholar 

  27. Tao J, Cuan Q, Gong X-Q, Batzill M (2012) J Phys Chem C 116:20438–20446

    Article  CAS  Google Scholar 

  28. Wu Z, Zhang W, Xiong F, Yuan Q, Jin Y, Yang J, Huang W (2014) Phys Chem Chem Phys 16:7051–7057

    Article  CAS  PubMed  Google Scholar 

  29. Kunat M, Burghaus U, Wöll Ch (2004) Phys Chem Chem Phys 6:4203

    Article  CAS  Google Scholar 

  30. Suzuki S, Fukui K, Onishi H, Iwasawa Y (2000) Phys Rev Lett 84:2156

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Lu G, Wu G, Mao D, Guo Y, Wang Y, Guo Y (2014) Catal Sci Technol 4:1268

    Article  CAS  Google Scholar 

  32. Panayotov DA. Yates JT (2007) Chem Phys Lett 436:204–208

    Article  CAS  Google Scholar 

  33. Bugyi L, Óvári L, Kiss J (2009) Surf Sci 603:2958

    Article  CAS  Google Scholar 

  34. Christmann K (1988) Surf Sci Rep 9:1–163

    Article  Google Scholar 

  35. Schennach RG, Krenn B, Klötzer KD, Rendulic (2003) Surf Sci 540:237

    Article  CAS  Google Scholar 

  36. Sterchele S, Bortolus M, Biasi P, Mikkola J-P, Salmi T (2016) CR Chimie 19:1011–1020

    Article  CAS  Google Scholar 

  37. Jansen MMM, Gracia J, Nieuwenhuys BE (2009) Phys Chem Chem Phys 11:10009–10016

    Article  CAS  PubMed  Google Scholar 

  38. Farstad MH, Ragazzon D, Walle LE, Schaefer A, Sandell A, Borg A (2015) J Phys Chem C 119:6660–6669

    Article  CAS  Google Scholar 

  39. Berkó A, Gubó R, Óvári L, Bugyi L, Szenti I, Kónya Z (2013) Langmuir 29:15868–15877

    Article  CAS  PubMed  Google Scholar 

  40. Millot F, Picard C (1988) Solid State Ion 28–30:1344–1348

    Article  Google Scholar 

  41. Berkó A, Bíró T, Solymosi F (2000) J Phys Chem B 104:2506

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supports through grants of the Hungarian Scientific Research Fund (OTKA) K120115, GINOP-2.3.2-15-2016-00013 and COST Action CM1104 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Bugyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szenti, I., Bugyi, L. & Kónya, Z. Reaction and Diffusion Paths of Water and Hydrogen on Rh Covered Black Titania. Top Catal 61, 1362–1374 (2018). https://doi.org/10.1007/s11244-018-0990-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0990-6

Keywords

Navigation