Skip to main content
Log in

Concave Cubes as Experimental Models of Catalytic Active Sites for the Oxygen-Assisted Coupling of Alcohols by Dilute (Ag)Au Alloys

  • ORIGINAL PAPER
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A major challenge in understanding structure–function relationships in heterogeneous catalysis is bridging the materials complexity gap between the well-ordered surfaces used in fundamental experimental and computational studies and the more complex and dynamic materials that exist under catalytic operating conditions. In this work, we utilized (Ag)Au concave cube nanoparticles as experimental models to test a prediction made by theory regarding a potential bimetallic active site for the dissociation of molecular oxygen, which is a key initiating step in the selective oxygen-assisted coupling of alcohols. As a consequence of their method of synthesis, the concave cubes have surfaces that are rich in Ag-stabilized Au step edges, which is the active site proposed by theory, and thus we predicted that they would have high activity for the methanol coupling reaction. Indeed, in addition to 99% selectivity toward the desired coupling product, methyl formate, the concave cubes show a major increase in activity compared to ozone-activated nanoporous gold, a comparable dilute (Ag)Au alloy catalyst for the same reaction, even without an activating ozone pretreament. Further, the well-defined surfaces of these concave cubes open up opportunities for in-situ microscopy and spectroscopy experiments that can provide a better understanding of (Ag)Au active sites. More broadly, this work highlights how nanoparticles with controlled shapes and well-defined surfaces can be rationally tailored to experimentally validate predictions from theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?. Angew Chem Int Ed 48(1):60–103. doi:10.1002/anie.200802248

    Article  CAS  Google Scholar 

  2. Gu J, Zhang Y-W, Tao F (2012) Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem Soc Rev 41(24):8050–8065. doi:10.1039/C2CS35184F

    Article  CAS  Google Scholar 

  3. Ruditskiy A, Peng H-C, Xia Y (2016) Shape-controlled metal nanocrystals for heterogeneous catalysis. Annu Rev Chem Biomol Eng 7(1):327–348. doi:10.1146/annurev-chembioeng-080615-034503

    Article  CAS  Google Scholar 

  4. Zhou Z-Y, Tian N, Li J-T, Broadwell I, Sun S-G (2011) Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev 40(7):4167–4185. doi:10.1039/C0CS00176G

    Article  CAS  Google Scholar 

  5. Roldan Cuenya B (2013) Metal nanoparticle catalysts beginning to shape-up. Acc Chem Res 46(8):1682–1691. doi:10.1021/ar300226p

    Article  CAS  Google Scholar 

  6. Roldan Cuenya B, Behafarid F (2015) Nanocatalysis: size- and shape-dependent chemisorption and catalytic reactivity. Surf Sci Rep 70(2):135–187. doi:10.1016/j.surfrep.2015.01.001

    Article  CAS  Google Scholar 

  7. Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA (2007) Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett 7(10):3097–3101. doi:10.1021/nl0716000

    Article  CAS  Google Scholar 

  8. Jiang H-L, Xu Q (2011) Recent progress in synergistic catalysis over heterometallic nanoparticles. J Mater Chem 21(36):13705–13725. doi:10.1039/C1JM12020D

    Article  CAS  Google Scholar 

  9. Porosoff MD, Yu W, Chen JG (2013) Challenges and opportunities in correlating bimetallic model surfaces and supported catalysts. J Catal 308:2–10. doi:10.1016/j.jcat.2013.05.009

    Article  CAS  Google Scholar 

  10. Norskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci USA 108(3):937–943. doi:10.1073/pnas.1006652108

    Article  CAS  Google Scholar 

  11. Holewinski A, Xin H, Nikolla E, Linic S (2013) Identifying optimal active sites for heterogeneous catalysis by metal alloys based on molecular descriptors and electronic structure engineering. Curr Opin Chem Eng 2(3):312–319. doi:10.1016/j.coche.2013.04.006

    Article  Google Scholar 

  12. Xin H, Holewinski A, Schweitzer N, Nikolla E, Linic S (2012) Electronic structure engineering in heterogeneous catalysis: Identifying novel alloy catalysts based on rapid screening for materials with desired electronic properties. Top Catal 55(5–6):376–390. doi:10.1007/s11244-012-9794-2

    Article  CAS  Google Scholar 

  13. Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Nørskov JK (2001) Catalyst design by interpolation in the periodic table: Bimetallic ammonia synthesis catalysts. J Am Chem Soc 123(34):8404–8405. doi:10.1021/ja010963d

    Article  CAS  Google Scholar 

  14. Hansgen DA, Vlachos DG, Chen JG (2010) Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nat Chem 2(6):484–489. doi:10.1038/nchem.626

    Article  CAS  Google Scholar 

  15. Wittstock A, Zielasek V, Biener J, Friend CM, Bäumer M (2010) Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327(5963):319–322. doi:10.1126/science.1183591

    Article  CAS  Google Scholar 

  16. Kosuda KM, Wittstock A, Friend CM, Baumer M (2012) Oxygen-mediated coupling of alcohols over nanoporous gold catalysts at ambient pressures. Angew Chem Int Ed 51(7):1698–1701. doi:10.1002/anie.201107178

    Article  CAS  Google Scholar 

  17. Personick ML, Zugic B, Biener MM, Biener J, Madix RJ, Friend CM (2015) Ozone-activated nanoporous gold: a stable and storable material for catalytic oxidation. ACS Catal 5(7):4237–4241. doi:10.1021/acscatal.5b00330

    Article  CAS  Google Scholar 

  18. Biener J, Biener MM, Madix RJ, Friend CM (2015) Nanoporous gold: Understanding the origin of the reactivity of a 21st century catalyst made by pre-Columbian technology. ACS Catal 5(11):6263–6270. doi:10.1021/acscatal.5b01586

    Article  CAS  Google Scholar 

  19. Personick ML, Montemore MM, Kaxiras E, Madix RJ, Biener J, Friend CM (2016) Catalyst design for enhanced sustainability through fundamental surface chemistry. Phil Trans R Soc A 374 (2061). doi:10.1098/rsta.2015.0077

  20. Personick ML, Madix RJ, Friend CM (2017) Selective oxygen-assisted reactions of alcohols and amines catalyzed by metallic gold: Paradigms for the design of catalytic processes. ACS Catal 7(2):965–985. doi:10.1021/acscatal.6b02693

    Article  CAS  Google Scholar 

  21. Xu B, Haubrich J, Baker TA, Kaxiras E, Friend CM (2011) Theoretical study of O-assisted selective coupling of methanol on Au(111). J Phys Chem C 115(9):3703–3708. doi:10.1021/jp110835w

    Article  CAS  Google Scholar 

  22. Zugic B, Wang L, Heine C, Zakharov DN, Lechner BAJ, Stach EA, Biener J, Salmeron M, Madix RJ, Friend CM (2017) Dynamic restructuring drives catalytic activity on nanoporous gold-silver alloy catalysts. Nat Mater 16(5):558–564. doi:10.1038/nmat4824

    Article  CAS  Google Scholar 

  23. Montemore MM, Cubuk ED, Klobas JE, Schmid M, Madix RJ, Friend CM, Kaxiras E (2016) Controlling O coverage and stability by alloying Au and Ag. Phys Chem Chem Phys 18(38):26844–26853. doi:10.1039/C6CP05611C

    Article  CAS  Google Scholar 

  24. Montemore MM, Madix RJ, Kaxiras E (2016) How does nanoporous gold dissociate molecular oxygen?. J Phys Chem C 120(30):16636–16640. doi:10.1021/acs.jpcc.6b03371

    Article  CAS  Google Scholar 

  25. Wang L-C, Personick ML, Karakalos S, Fushimi R, Friend CM, Madix RJ (2016) Active sites for methanol partial oxidation on nanoporous gold catalysts. J Catal 344:778–783. doi:10.1016/j.jcat.2016.08.012

    Article  CAS  Google Scholar 

  26. Oviedo OA, Negre CFA, Mariscal MM, Sánchez CG, Leiva EPM (2012) Underpotential deposition on free nanoparticles: its meaning and measurement. Electrochem Commun 16(1):1–5. doi:10.1016/j.elecom.2011.12.013

    Article  CAS  Google Scholar 

  27. Oviedo OA, Vélez P, Macagno VA, Leiva EPM (2015) Underpotential deposition: from planar surfaces to nanoparticles. Surf Sci 631:23–34. doi:10.1016/j.susc.2014.08.020

    Article  CAS  Google Scholar 

  28. Personick ML, Langille MR, Zhang J, Mirkin CA (2011) Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett 11(8):3394–3398. doi:10.1021/nl201796s

    Article  CAS  Google Scholar 

  29. Padmos JD, Personick ML, Tang Q, Duchesne PN, Jiang D, Mirkin CA, Zhang P (2015) The surface structure of silver-coated gold nanocrystals and its influence on shape control. Nat Commun 6:7664. doi:10.1038/ncomms8664

  30. Personick ML, Langille MR, Wu J, Mirkin CA (2013) Synthesis of gold hexagonal bipyramids directed by planar-twinned silver triangular nanoprisms. J Am Chem Soc 135(10):3800–3803. doi:10.1021/ja400794q

    Article  CAS  Google Scholar 

  31. Personick ML, Langille MR, Zhang J, Harris N, Schatz GC, Mirkin CA (2011) Synthesis and isolation of {110}-faceted gold bipyramids and rhombic dodecahedra. J Am Chem Soc 133(16):6170–6173. doi:10.1021/ja201826r

    Article  CAS  Google Scholar 

  32. Personick ML, Mirkin CA (2013) Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J Am Chem Soc 135(49):18238–18247. doi:10.1021/ja408645b

    Article  CAS  Google Scholar 

  33. Zhang J, Langille MR, Personick ML, Zhang K, Li S, Mirkin CA (2010) Concave cubic gold nanocrystals with high-index facets. J Am Chem Soc 132(40):14012–14014. doi:10.1021/ja106394k

    Article  CAS  Google Scholar 

  34. Liu M, Guyot-Sionnest P (2005) Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 109(47):22192–22200. doi:10.1021/jp054808n

    Article  CAS  Google Scholar 

  35. Xu B, Madix RJ, Friend CM (2010) Achieving optimum selectivity in oxygen assisted alcohol cross-coupling on gold. J Am Chem Soc 132(46):16571–16580. doi:10.1021/ja106706v

    Article  CAS  Google Scholar 

  36. Xu B, Liu X, Haubrich J, Madix RJ, Friend CM (2009) Selectivity control in gold-mediated esterification of methanol. Angew Chem Int Ed 48(23):4206–4209. doi:10.1002/anie.200805404

    Article  CAS  Google Scholar 

  37. Xu B, Friend CM (2011) Oxidative coupling of alcohols on gold: Insights from experiments and theory. Faraday Discuss 152:307–320. doi:10.1039/c1fd00015b

    Article  CAS  Google Scholar 

  38. Stowers KJ, Madix RJ, Friend CM (2013) From model studies on Au(111) to working conditions with unsupported nanoporous gold catalysts: oxygen-assisted coupling reactions. J Catal 308:131–141. doi:10.1016/j.jcat.2013.05.033

    Article  CAS  Google Scholar 

  39. Wang L-C, Stowers KJ, Zugic B, Biener MM, Biener J, Friend CM, Madix RJ (2015) Methyl ester synthesis catalyzed by nanoporous gold: from 10–9 Torr to 1 atm. Catal Sci Technol 5(2):1299–1306. doi:10.1039/c4cy01169d

    Article  CAS  Google Scholar 

  40. Wang L-C, Stowers KJ, Zugic B, Personick ML, Biener MM, Biener J, Friend CM, Madix RJ (2015) Exploiting basic principles to control the selectivity of the vapor phase catalytic oxidative cross-coupling of primary alcohols over nanoporous gold catalysts. J Catal 329:78–86. doi:10.1016/j.jcat.2015.04.022

    Article  CAS  Google Scholar 

  41. Langille MR, Personick ML, Zhang J, Mirkin CA (2012) Defining rules for the shape evolution of gold nanoparticles. J Am Chem Soc 134(35):14542–14554. doi:10.1021/ja305245g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgment is made to the donors of The American Chemical Society Petroleum Research Fund for partial support of this research. This work was also supported by start-up funding from Wesleyan University. SEM characterization was carried out at Yale University and facilities use was supported by YINQE and NSF MRSEC DMR 1119826. ICP-AES measurements were performed at the Yale Analytical and Stable Isotope Center (YASIC), a Yale Institute for Biospheric Studies (YIBS) research center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Personick.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 881 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robertson, D.D., King, M.E. & Personick, M.L. Concave Cubes as Experimental Models of Catalytic Active Sites for the Oxygen-Assisted Coupling of Alcohols by Dilute (Ag)Au Alloys. Top Catal 61, 348–356 (2018). https://doi.org/10.1007/s11244-017-0874-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0874-1

Keywords

Navigation