Skip to main content
Log in

Structural Differentiation of the Reactivity of Alcohols with Active Oxygen on Au(110)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A wide range of oxidative coupling reactions occur under mild conditions on gold, all of which are activated by atomically adsorbed oxygen (Oads). We have examined the reactivity of methanol and ethanol for self-coupling with well-ordered O-covered Au(110) surface structures, characterized by scanning tunneling microscopy (STM). Zig-zag O chains along the reconstructed (1 × 2) surface are observed up to a coverage of 0.25 Ml O that evolve into double row structures filling all threefold hollow sites along the topmost rows of gold atoms up to 0.5 Ml. Surface roughening occurs above 0.5 Ml O. Below 0.08 Ml O, both alcohols exhibit 100% selectivity for self-coupling to their corresponding ester. This adsorbed O consumed by abstraction of the alcoholic hydrogen, to form the adsorbed alkoxide. Under these conditions further C–H bond of both the adsorbed alkoxy and hemiacetal alcoholate intermediates necessary to form the ester predominates over reactions assisted by Oads. Above ~0.08 Ml the alcohols react very differently. Methanol is not activated by additional adsorbed O, whereas ethanol reacts readily up to a coverage of 0.35 Ml O. We attribute this differentiation to both a change in the energetics of the O bonding to the surface and differences in the energetics of reaction of the two alcohols to form adsorbed alkoxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leibsle FM, Murray PW, Francis SM et al (1993) One-dimensional reactivity in catalysis studied with the scanning tunneling microscope. Nature 363:706–709. doi: 10.1038/363706a0

    Article  CAS  Google Scholar 

  2. Zheng G, Altman EI (2002) The reactivity of surface oxygen phases on Pd(100) toward reduction by CO. J Phys Chem B 106:1048–1057. doi: 10.1021/jp013395x

    Article  CAS  Google Scholar 

  3. Min BK, Alemozafar AR, Pinnaduwage D et al (2006) Efficient CO oxidation at low temperature on Au(111). J Phys Chem B 110:19833–19838. doi: 10.1021/jp0616213

    Article  CAS  Google Scholar 

  4. Outka DA, Madix RJ (1987) The oxidation of carbon monoxide on the Au (110) surface. Surf Sci Lett 179:351–360. doi: 10.1016/0167-2584(87)90267-2

    Article  CAS  Google Scholar 

  5. Gland JL, Kollin EB (1983) Carbon monoxide oxidation on the Pt (111) surface: temperature programmed reaction of coadsorbed atomic oxygen and carbon monoxide. J Chem Phys 78:963–974. doi: 10.1063/1.444801

    Article  CAS  Google Scholar 

  6. Crew WW, Madix RJ (1996) A scanning tunneling microscopy study of the oxidation of CO on Cu(110) at 400 K: site specificity and reaction kinetics. Surf Sci 349:275–293. doi: 10.1016/0039-6028(96)80026-4

    Article  CAS  Google Scholar 

  7. Gerrard AL, Weaver JF (2005) Kinetics of CO oxidation on high-concentration phases of atomic oxygen on Pt (111). J Chem Phys 123:224703–224703. doi: 10.1063/1.2126667

    Article  Google Scholar 

  8. Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev 107:2709–2724. doi: 10.1021/cr050954d

    Article  CAS  Google Scholar 

  9. Coulman DJ, Wintterlin J, Behm RJ, Ertl G (1990) Novel mechanism for the formation of chemisorption phases: The (2 × 1) O-Cu (110) added row reconstruction. Phys Rev Lett 64:1761–1766. doi: 10.1103/physrevlett.64.1761

    Article  CAS  Google Scholar 

  10. Crew WW, Madix RJ (1994) Monitoring surface reactions with scanning tunneling microscopy: CO oxidation on p (2 × 1)-O pre-covered Cu (110) at 400 K. Surf Sci 319:L34–L40. doi: 10.1016/0039-6028(94)90587-8

    Article  CAS  Google Scholar 

  11. Davies PR, Bowker M (2010) On the nature of the active site in catalysis: the reactivity of surface oxygen on Cu (110). Catal Today 154:31–37. doi: 10.1016/j.cattod.2009.12.011

    Article  CAS  Google Scholar 

  12. Hashizume T, Taniguchi M, Motai K et al (1991) Field ion-scanning tunneling microscopy study of the Ag(110)-O System. Jpn J Appl Phys 30:L1529–L1531. doi: 10.1143/jjap.30.l1529

    Article  CAS  Google Scholar 

  13. Pai WW, Reutt-Robey JE (1996) Formation of (n × 1)-O/Ag(110) overlayers and the role of step-edge atoms. Phys Rev B 53:15997–16005. doi: 10.1103/physrevb.53.15997

    Article  CAS  Google Scholar 

  14. Taniguchi M, Tanaka K, Hashizume T, Sakurai T (1992) Ordering of Ag-O chains on the Ag (110) surface. Surf Sci Lett 262:L123–L128. doi: 10.1016/0039-6028(92)90120-U

    Article  CAS  Google Scholar 

  15. Nakagoe O, Watanabe K, Takagi N, Matsumoto Y (2005) In situ observation of CO oxidation on Ag(110)(2 × 1)-O by scanning tunneling microscopy: structural fluctuation and catalytic activity. J Phys Chem B 109:14536–14543. doi: 10.1021/jp0512154

    Article  CAS  Google Scholar 

  16. McEwan L, Julius M, Roberts S, Fletcher J (2010) A review of the use of gold catalysts in selective hydrogenation reactions. Gold Bull 43:298–306. doi: 10.1007/BF03214999

    Article  CAS  Google Scholar 

  17. Hiebel F, Montemore MM, Kaxiras E, Friend CM (2016) Direct visualization of quasi-ordered oxygen chain structures on Au(110)-(1 × 2). Surf Sci 650:5–10. doi: 10.1016/j.susc.2015.09.018

    Article  CAS  Google Scholar 

  18. Landmann M, Rauls E, Schmidt WG (2009) Chainlike Au-O structures on Au(110)-(1 × r) surfaces calculated from first principles. J Phys Chem C 113:5690–5699. doi: 10.1021/jp810581s

    Article  CAS  Google Scholar 

  19. Xu B, Madix RJ, Friend CM (2014) Predicting gold-mediated catalytic oxidative-coupling reactions from single crystal studies. Acc Chem Res 47:761–772. doi: 10.1021/ar4002476

    Article  CAS  Google Scholar 

  20. Pan M, Gong J, Dong G, Mullins CB (2014) Model studies with gold: a versatile oxidation and hydrogenation catalyst. Acc Chem Res 47:750–760. doi: 10.1021/ar400172u

    Article  CAS  Google Scholar 

  21. Liu X, Xu B, Haubrich J et al (2009) Surface-mediated self-coupling of ethanol on gold. J Am Chem Soc 131:5757–5759. doi: 10.1021/ja900822r

    Article  CAS  Google Scholar 

  22. Xu B, Liu X, Haubrich J et al (2009) Selectivity control in gold-mediated esterification of methanol. Angew Chem Int Ed 48:4206–4209. doi: 10.1002/anie.200805404

    Article  CAS  Google Scholar 

  23. Xu B, Friend CM (2011) Oxidative coupling of alcohols on gold: insights from experiments and theory. Faraday Discuss 152:307–320. doi: 10.1039/c1fd00015b

    Article  CAS  Google Scholar 

  24. Gong J, Flaherty DW, Yan T, Mullins CB (2008) Selective oxidation of propanol on Au(111): mechanistic insights into aerobic oxidation of alcohols. Chem Phys Chem 9:2461–2466. doi: 10.1002/cphc.200800680

    Article  CAS  Google Scholar 

  25. Dhanak VR, Prince KC, Rosei R et al (1994) STM study of oxygen on Rh(110). Phys Rev B 49:5585–5596. doi: 10.1103/physrevb.49.5585

    Article  CAS  Google Scholar 

  26. Africh C, Esch F, Comelli G, Rosei R (2002) Reactivity and deconstruction of the (1 × 2)-Rh (110) surface studied by scanning tunneling microscopy. J Chem Phys 116:7200–7206. doi: 10.1063/1.1465411

    Article  CAS  Google Scholar 

  27. Africh C, Kohler L, Esch F, Corso M (2009) Effects of lattice expansion on the reactivity of a one-dimensional oxide. J Am Chem Soc 131:3253–3259. doi: 10.1021/ja808100f

    Article  CAS  Google Scholar 

  28. Jensen F, Besenbacher F, Lægsgaard E, Stensgaard I (1990) Surface reconstruction of Cu(110) induced by oxygen chemisorption. Phys Rev B 41:10233–10239. doi: 10.1103/physrevb.41.10233

    Article  CAS  Google Scholar 

  29. Personick ML, Madix RJ, Friend CM (2017) Selective oxygen-assisted reactions of alcohols and amines catalyzed by metallic gold: paradigms for the design of catalytic processes. ACS Catal 7:965–985. doi: 10.1021/acscatal.6b02693

    Article  CAS  Google Scholar 

  30. Gong J, Flaherty DW, Ojifinni RA et al (2008) Surface chemistry of methanol on clean and atomic oxygen pre-covered Au(111). J Phys Chem C 112:5501–5509. doi: 10.1021/jp0763735

    Article  CAS  Google Scholar 

  31. Outka DA, Madix RJ (1987) Broensted basicity of atomic oxygen on the gold (110) surface: reactions with methanol, acetylene, water, and ethylene. J Am Chem Soc 109:1708–1714. doi: 10.1021/ja00240a018

    Article  CAS  Google Scholar 

  32. Xu B, Haubrich J, Baker TA, Kaxiras E (2011) Theoretical study of O-assisted selective coupling of methanol on Au (111). J Phys Chem C 115:3703–3708. doi: 10.1021/jp110835w

    Article  CAS  Google Scholar 

  33. Xu B, Liu X, Haubrich J, Friend CM (2010) Vapour-phase gold-surface-mediated coupling of aldehydes with methanol. Nat Chem 2:61–65. doi: 10.1038/nchem.467

    Article  CAS  Google Scholar 

  34. Karakalos S, Xu Y, Kabeer FC et al (2016) Noncovalent bonding controls selectivity in heterogeneous catalysis: coupling reactions on gold. J Am Chem Soc 138:15243–15251. doi: 10.1021/jacs.6b09450

    Article  CAS  Google Scholar 

  35. Moylan CR, Brauman JI (1984) Bond dissociation energies in alcohols: kinetic and photochemical evidence regarding ion thermochemistry. J Phys Chem 88:3175–3176. doi: 10.1021/j150659a006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award Number DE-SC0012573.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Madix.

Additional information

Fanny Hiebel and Stavros Karakalos are Co-First Authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7792 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiebel, F., Karakalos, S., Xu, Y. et al. Structural Differentiation of the Reactivity of Alcohols with Active Oxygen on Au(110). Top Catal 61, 299–307 (2018). https://doi.org/10.1007/s11244-017-0855-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0855-4

Keywords

Navigation