Skip to main content
Log in

The Role of NO2 in the Fast NH3-SCR of NOx: A Combined In Situ FTIR and EPR Spectroscopic Study

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

For elucidating the role of NO2 in the fast NH3-SCR of NOx combined in situ FTIR and EPR spectroscopic studies were carried out to correlate adsorbate formation at the catalyst surface (FTIR) with changes of the different iron sites (EPR). For this purpose interactions of the feed components NO, NO2, and NH3 with Fe sites in a commercial Fe-ZSM-5 were studied and reactivities of preadsorbed species towards other reactants (nitrates created by NO2 adsorption towards NO and NH3, and ammonia/NH4 + towards NO2 and NO/O2) were investigated. In addition, the behavior of this catalyst in standard and fast SCR was studied. NO2 in the feed gas mixture causes an accelerated formation of nitrates mainly adsorbed on β-Fe sites on which they are reduced by NH3 and NO, more effectively by the mixture of both. The adsorption of NO2 and NH3 at different but adjacent sites facilitate the formation of NH4NO2 which decomposes into N2 and H2O. The Fe sites in β and γ position are efficiently reoxidized by NO2 already at 150 °C and are thus kept in a redox-active state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gabrielsson P, Pedersen HG (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley, Weinheim

    Google Scholar 

  2. Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) Catal Rev Sci Eng 50:492–531

    Article  CAS  Google Scholar 

  3. Nova I, Tronconi E (2014) Urea-SCR technology for deNOx after treatment of diesel exhausts. Springer, Berlin

    Book  Google Scholar 

  4. Koebel M, Madia G, Elsener M (2002) Catal Today 73:239–247

    Article  CAS  Google Scholar 

  5. Devadas M, Kröcher O, Elsener M, Wokaun A, Söger N, Pfeifer M, Demel Y, Mussmann L (2006) Appl Catal B 67:187–196

    Article  CAS  Google Scholar 

  6. Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M (2008) J Catal 256:312–322

    Article  CAS  Google Scholar 

  7. Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M (2009) Top Catal 52:1837–1841

    Article  CAS  Google Scholar 

  8. Grossale A, Nova I, Tronconi E (2009) Catal Lett 130:525–531

    Article  CAS  Google Scholar 

  9. Grossale A, Nova I, Tronconi E (2009) J Catal 265:141–147

    Article  CAS  Google Scholar 

  10. Iwasaki M, Yamazaki K, Shinjoh H (2009) Appl Catal A 366:84–92

    Article  CAS  Google Scholar 

  11. Iwasaki M, Shinjoh H (2010) Appl Catal A 390:71–77

    Article  CAS  Google Scholar 

  12. Malpartida I, Marie O, Bazin P, Daturi M, Jeandel X (2012) Appl Catal B 113–114:52–60

    Article  Google Scholar 

  13. Brandenberger S, Kröcher O, Tissler A, Althoff R (2010) Appl Catal B 95:348–357

    Article  CAS  Google Scholar 

  14. Brandenberger S, Kröcher O, Wokaun A, Tissler A, Althoff R (2009) J Catal 268:297–306

    Article  CAS  Google Scholar 

  15. Høj SM, Beier MJ, Grunwaldt JD, Dahl S (2009) Appl Catal B 93:166–176

    Article  Google Scholar 

  16. Klukowski SD, Balle P, Geiger B, Wagloehner S, Kureti S, Kimmerle B, Baiker A, Grunwaldt JD (2009) Appl Catal B 93:185–193

    Article  CAS  Google Scholar 

  17. Sun Q, Gao ZX, Wen B, Sachtler WMH (2002) Catal Lett 78:1–4

    Article  CAS  Google Scholar 

  18. Kumar MS, Schwidder M, Grünert W, Bentrup U, Brückner A (2006) J Catal 239:173–186

    Article  Google Scholar 

  19. Long RQ, Yang RT (2002) J Catal 207:224–231

    Article  CAS  Google Scholar 

  20. Li J, Li S (2008) J Phys Chem C 112:16938–16944

    Article  CAS  Google Scholar 

  21. Brüggemann TC, Keil FJ (2011) J Phys Chem C 115:23854–23870

    Article  Google Scholar 

  22. Ruggeri MP, Grossale A, Nova I, Tronconi E, Jirglova H, Sobalik Z (2012) Catal Today 184:107–114

    Article  CAS  Google Scholar 

  23. Colombo M, Nova I, Tronconi E (2012) Appl Catal B 111–112:433–444

    Article  Google Scholar 

  24. Pérez Vélez R, Ellmers I, Huang H, Bentrup U, Schünemann V, Grünert W, Brückner A (2014) J Catal 316:103–111

    Article  Google Scholar 

  25. Schwidder M, Kumar MS, Klementiev K, Pohl MM, Brückner A, Grünert W (2005) J Catal 231:314–330

    Article  CAS  Google Scholar 

  26. Pirngruber GD, Roy PK, Prins R (2006) Phys Chem Chem Phys 8:3939–3950

    Article  CAS  Google Scholar 

  27. Ellmers I, Pérez Vélez R, Bentrup U, Brückner A, Grünert W (2014) J Catal 311:199–211

    Article  CAS  Google Scholar 

  28. Kubanek P, Wichterlova B, Sobalik Z (2002) J Catal 211:109–118

    CAS  Google Scholar 

  29. Berrier E, Ovsitser O, Kondratenko EV, Schwidder M, Grünert W, Brückner A (2007) J Catal 249:67–78

    Article  CAS  Google Scholar 

  30. Lercher JA, Gründling C, Eder-Mirth G (1996) Catal Today 27:353–376

    Article  CAS  Google Scholar 

  31. Lezcano M, Kovalchuk VI, d´Itri JL (2001) Kinet Catal 42:104–111

    Article  CAS  Google Scholar 

  32. Hadjiivanov K, Knözinger H, Tsyntsarski B, Dimitrov L (1999) Catal Lett 62:35–40

    Article  CAS  Google Scholar 

  33. Lobree LJ, Hwang IC, Reimer JA, Bell AT (1999) J Catal 186:242–253

    Article  CAS  Google Scholar 

  34. Mul G, Pérez-Ramírez J, Kapteijn F, Moulijn JA (2002) Catal Lett 80:129–138

    Article  CAS  Google Scholar 

  35. Berlier G, Lamberti C, Rivallan M, Mul G (2010) Phys Chem Chem Phys 12:358–364

    Article  CAS  Google Scholar 

  36. Rivallan M, Ricchiardi G, Bordiga S, Zecchina A (2009) J Catal 264:104–116

    Article  CAS  Google Scholar 

  37. Iwasaki M, Shinjoh H (2010) J Catal 273:29–38

    Article  CAS  Google Scholar 

  38. Hadjiivanov K, Saussey J, Freysz JL, Lavalley JC (1998) Catal Lett 52:103–108

    Article  CAS  Google Scholar 

  39. Sazama P, Wichterlova B, Tabor E, Stastny P, Sathu NK, Sobalik Z, Dedecek J, Sklenak S, Klein P, Vondrova A (2014) J Catal 312:123–138

    Article  CAS  Google Scholar 

  40. Zecchina A, Rivallan M, Berlier G, Lamberti C, Ricchiardi G (2007) Phys Chem Chem Phys 9:3483–3499

    Article  CAS  Google Scholar 

  41. Hadjiivanov K (2000) Catal Rev-Sci Eng 42:71–144

    Article  CAS  Google Scholar 

  42. Sun Q, Gao ZX, Chen HY, Sachtler WMH (2001) J Catal 201:89–99

    Article  CAS  Google Scholar 

  43. Janssens TVW, Falsig H, Lundegaard LF, Vennestrøm PNR, Rasmussen SB, Moses PG, Giordanino F, Borfecchia E, Lomachenko KA, Lamberti C, Bordiga S, Godiksen A, Mossin S, Beato P (2015) ACS Catal 5: 2832–2845

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Inga Ellmers for performing the catalytic tests and Anja Simmula for the ICP-OES analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Bentrup.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 430 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vélez, R.P., Bentrup, U., Grünert, W. et al. The Role of NO2 in the Fast NH3-SCR of NOx: A Combined In Situ FTIR and EPR Spectroscopic Study. Top Catal 60, 1641–1652 (2017). https://doi.org/10.1007/s11244-017-0840-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0840-y

Keywords

Navigation