Skip to main content
Log in

N-Dodecane Autothermal Reforming Properties of Ni-Al Based Catalysts Prepared by Various Methods

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ni-Al-based catalysts prepared by impregnation, co-precipitation, and polymer-modified incipient methods, referred to as NA-IM, NA-CM, and NA-PM, respectively, were applied to autothermal reforming (ATR) of n-dodecane, since this hydrocarbon exhibits properties similar to those of diesel fuel and can be used as its surrogate. The corresponding catalytic performances were evaluated in terms of H2 yield and n-dodecane conversion at 750 °C and 12,000 h−1 in a fixed-bed reactor at an S/C molar ratio of 1.23 and an O2/C molar ratio of 0.25. NA-CM and NA-PM exhibited similar performances in terms of H2 yield (1.4) and n-dodecane conversion (90%); however, the performance of NA-IM was inferior to those of other catalysts. The differences between the prepared catalysts were investigated by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller analysis, with the obtained results indicating the importance of well-dispersed Ni species in NA-PM for efficient ATR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andrews J, Shabani B (2012) Int J Hydrogen Energy 37:1184–1203

    Article  CAS  Google Scholar 

  2. Afgan N, Veziroglu A (2012) Int J Hydrogen Energy 37:5461–5467

    Article  CAS  Google Scholar 

  3. Lawrence J, Boltze M (2006) J Power Sources 154:479–488

    Article  CAS  Google Scholar 

  4. Nehter P, Hansen JB, Larsen PK (2011) J Power Sources 196:7347–7354

    Article  CAS  Google Scholar 

  5. Boon J, Dijk EV, Munck SD, Brink RVD (2011) J Power Sources 196:5928–5935

    Article  CAS  Google Scholar 

  6. Yoon S, Kang I, Bae J (2008) Int J Hydrogen Energy 33:4780–4788

    Article  CAS  Google Scholar 

  7. González AV, Pettersson LJ (2013) Catal Today 210:19–25

    Article  Google Scholar 

  8. Kang I, Bae J, Bae G (2006) J Power Sources 163:538–546

    Article  CAS  Google Scholar 

  9. Kaila RK, Krause AOI (2006) Int J Hydrogen. Energy 31:1934–1941

    CAS  Google Scholar 

  10. Ming Q, Healey T, Allen L, Irving P (2002) Catal Today 77:51–64

    Article  CAS  Google Scholar 

  11. Xie C, Chen Y, Li Y, Wang X, Song C (2011) Appl Catal A Gen 394:32–40

    Article  CAS  Google Scholar 

  12. Bang Y, Lee J, Han SJ, Seo JG, Youn MH, Song JH, Song IK (2012) Int J Hydrogen Energy 37:11208–11217

    Article  CAS  Google Scholar 

  13. O¨zkara-Aydınog˘lu S, O¨zensoy E, Aksoylu AE (2009) Int J Hydrogen Energy 34:9711–9722

    Article  Google Scholar 

  14. Villoria JA, Alvarez-Galvan MC, Navarro RM, Bricen˜ob Y, Alvarez FG, Rosa F, Fierro JLG (2008) Catal Today 138:135–140

    Article  CAS  Google Scholar 

  15. Achouri IE, Abatzoglou N, Fauteux-Lefebvre C, Braidy N (2013) Catal Today 207:13–20

    Article  CAS  Google Scholar 

  16. Daza CE, Moreno S, Molina R (2011) Int J Hydrogen Energy 36:3886–3894

    Article  CAS  Google Scholar 

  17. Zhang X, Hirota R, Kubota T, Yoneyama Y, Tsubaki N (2011) Catal Commun 13:44–48

    Article  CAS  Google Scholar 

  18. Jung SY, Ju DG, Lim EJ, Lee SC, Hwang BY, Kim JC (2015) Int J Hydrogen Energy 40:13412–13422

    Article  CAS  Google Scholar 

  19. Kim P, Kim Y, Kim C, Kim H, Park Y, Lee JH, Song IK, Yi J (2003) Catal Lett 89:185–192

    Article  CAS  Google Scholar 

  20. Kim P, Kim Y, Kim H, Song IK, Yi J (2005) J Mol Catal A Chem 231:247–254

    Article  CAS  Google Scholar 

  21. Nguyen PTM, Do DD, Nicholson D (2013) J Colloid Interface Sci 396:242–250

    Article  CAS  Google Scholar 

  22. Seo JG, Youn MH, Bang Y, Song IK (2010) Int J Hydrogen Energy 35:12174–12181

    Article  CAS  Google Scholar 

  23. Bang Y, Seo JG, Song IK (2011) Int J Hydrogen Energy 36:8307–8315

    Article  CAS  Google Scholar 

  24. Li G, Hu L, Hill JM (2006) Appl Catal A Gen 301:16–24

    Article  CAS  Google Scholar 

  25. Osaki T, Mori T (2009) J Non Cryst Solids 355:1590–1596

    Article  CAS  Google Scholar 

  26. Tarte P (1967) Spectrochim Acta A 23:2127–2143

    Article  CAS  Google Scholar 

  27. Fauteux-Lefebvre C, Abatzoglou N, Braidy N, Achouri IE (2011) J Power Sources 196:7673–7680

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea CCS R&D Center (Korea CCS 2020 Project) grant funded by the Korea government (Ministry of Science, ICT & Future Planning) in 2014 (KCRC-2014M1A8A1049249). This study was also supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2009–0093819).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Chang Kim.

Additional information

Woo Suk Lee and Dong Geon Ju contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, W.S., Ju, D.G., Jung, S.Y. et al. N-Dodecane Autothermal Reforming Properties of Ni-Al Based Catalysts Prepared by Various Methods. Top Catal 60, 727–734 (2017). https://doi.org/10.1007/s11244-017-0777-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0777-1

Keywords

Navigation