Skip to main content
Log in

High-Throughput Screening Approach to Identify New Catalysts for Total Oxidation of Methane from Gas Fueled Lean Burn Engines

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this contribution we present the results of a parallel high-throughput screening (HTS), which was carried out to identify new catalysts for the total oxidation of methane, a chemical compound that shows a significantly higher global warming potential compared to carbon dioxide. An interesting application for these materials is the abatement of unburned methane in exhaust gases from biogas fueled lean burn engines. After the synthesis of a high variety of different materials by a sol–gel procedure and their evaluation by infrared thermography under simplified reaction conditions, the activity of the most promising candidates was validated under a complex exhaust gas composition in a conventional plug flow reactor. The aging behavior of the best catalysts from the HTS was studied in a tenfold parallel reactor setup. Only a small number of the studied materials exhibited an interesting long term stability during the aging procedure. With this approach a high number of potential materials can be rapidly reduced to only a few catalysts which are promising for a possible industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. German Biogas Association (2014) Biogas segment statistics 2014. http://www.biogas.org. Accessed 25.01.2015

  2. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K-B, Tignor M, Miller H-L (eds) (2007) Climate change 2007: the physical science basis. Cambridge University Press, New York

    Google Scholar 

  3. Cargnello M, Delgado J, Hernández Garrido J-C, Bakhmutsky K, Montini T, Calvino Gámez J, Gorte R-J, Fornasiero P (2012) Science 337:713

    Article  CAS  Google Scholar 

  4. Gélin P, Primet M (2002) Appl Catal B Environ 39:1

    Article  Google Scholar 

  5. Gélin P, Urfels L, Primet M, Tena E (2003) Catal Today 83:45

    Article  Google Scholar 

  6. Ohtsuka H (2011) Catal Lett 141:413

    Article  CAS  Google Scholar 

  7. Bounechada D, Groppi G, Forzatti P, Kallinen K, Kinnunen T (2012) Appl Catal B Environ 119–120:91

    Article  Google Scholar 

  8. Gremminger A, Pereira de Carvalho H, Popescu R, Grunwaldt J-D, Deutschmann O (2015) Catal Today. doi:10.1016/j.cattod.2015.01.034

  9. Ciuparu D, Lyubovsky M, Altman E, Pfefferle L, Datye A (2002) Catal Rev Sci Eng 44:593

    Article  CAS  Google Scholar 

  10. Petrovic S, Karanovic L, Stefanov P, Zdujic M, Terlecki-Baricevic A (2005) Appl Catal B Environ 58:133

    Article  CAS  Google Scholar 

  11. Schwartz W, Ciuparu D, Pfefferle L (2012) J Phys Chem C 116:8587

    Article  CAS  Google Scholar 

  12. Ordonez S, Paredes J, Diaz F (2008) Appl Catal A Gen 341:174

    Article  CAS  Google Scholar 

  13. Escandon L, Ordonez S, Vega A, Diez F (2008) J Hazard Mater 153:742

    Article  CAS  Google Scholar 

  14. Mowery D, McCormick R (2001) Appl Catal B Environ 34:287

    Article  CAS  Google Scholar 

  15. Lapisardi G, Urfels L, Gelin P, Primet M, Kaddouri A, Garbowski E, Toppi S, Tena E (2006) Catal Today 117:564

    Article  CAS  Google Scholar 

  16. Ohtsuka H (2011) Catal Lett 141:413

    Article  CAS  Google Scholar 

  17. Ohtsuka H (2013) Catal Lett 143:1043

    Article  CAS  Google Scholar 

  18. Wessler B, Jehanno V, Rossner W, Maier W (2004) Appl Surf Sci 223:30

    Article  CAS  Google Scholar 

  19. Welsch F, Stöwe K, Maier W (2011) ACS Comb Sci 13:518

    Article  CAS  Google Scholar 

  20. Hammes M, Valtchev M, Roth M, Stöwe K, Maier WF (2013) Appl Catal B Environ 132–133:389

    Article  Google Scholar 

  21. Holzwarth A, Schmidt H, Maier W (1998) Angew Chem Int Ed 37:2644

    Article  CAS  Google Scholar 

  22. Loskyll J, Stöwe K, Maier W (2011) Sci Technol Adv Mater 12:1

    Article  Google Scholar 

  23. Loskyll J, Stöwe K, Maier W (2012) ACS Comb Sci 14:295

    Article  CAS  Google Scholar 

  24. Valtchev M, Hammes M, Richter R, Höltzen H, Stöwe K, Maier W (2014) Chem Eng Technol 37:1251

    Article  CAS  Google Scholar 

  25. Stöwe K, Hammes M, Valtchev M, Roth M, Maier W (2014) In: Hagemeyer A, Volpe A (eds) Modern applications of high throughput R&D in heterogeneous catalysis. Bentham Science Publishers, Sharjah

    Google Scholar 

  26. Deutsches Biomasseforschungszentrum (2015) Measures to reduce emissions from biogas plants (REMISBIO), https://www.dbfz.de/web/en/research/reference-projects/measures-to-reduce-emissions-from-biogas-plants-remisbio.html. Accessed 28.01.2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Stöwe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gärtner, A., Lenk, T., Kiemel, R. et al. High-Throughput Screening Approach to Identify New Catalysts for Total Oxidation of Methane from Gas Fueled Lean Burn Engines. Top Catal 59, 1071–1075 (2016). https://doi.org/10.1007/s11244-016-0593-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0593-z

Keywords

Navigation