Skip to main content
Log in

The SCR of NOx with NH3 Examined by Novel X-ray Emission and X-ray Absorption Methods

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This work reports on exploiting conventional and novel hard X-ray techniques for identifying the structure of catalysts in exhaust gas catalysis under working conditions. Operando X-ray absorption spectroscopy, high energy resolution fluorescence detected X-ray absorption near edge structure and valence-to-core (V2C) X-ray emission spectroscopy (XES) have been applied in a spatially-resolved manner to study Fe- and Cu-zeolite catalysts during standard SCR and related reactions. The results demonstrate the formation of pronounced gradients in Fe and Cu oxidation state and their coordination along the catalyst bed, which strongly depend on the transition metal loading, gas mixture and temperature. Complementary V2C XES provides a clear view on the adsorption of NH3 and NO directly at the Fe and Cu centers or via the neighboring O atoms. Both NH3 and NO are strongly adsorbed at the Fe sites even in the presence of water. In contrast, only the interaction with NH3 leads to clear changes of the XES lines for Cu-SSZ-13. These dissimilarities suggest different pathways at low temperatures for the SCR process on Fe-ZSM-5 and Cu-SSZ-13. The new structural and mechanistic aspects obtained with these operando and X-ray based methods together with theoretical calculations and further complementary operando spectroscopic methods provide an excellent basis for improvement of targeted synthesis, hierarchical kinetic modeling and development of appropriate exhaust after treatment control algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Johnson TV (2014) SAE Int J Eng 7(3):1207–1227

    Article  Google Scholar 

  2. Johnson TV (2015) SAE Int J Eng 8(3):1152–1167

    Google Scholar 

  3. Borfecchia E, Lomachenko KA, Giordanino F, Falsig H, Beato P, Soldatov AV, Bordiga S, Lamberti C (2015) Chem Sci 6(1):548–563

    Article  CAS  Google Scholar 

  4. Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) Catal Rev 50(4):492–531

    Article  CAS  Google Scholar 

  5. Gao F, Kwak J, Szanyi J, Peden CF (2013) Top Catal 56(15–17):1441–1459

    Article  CAS  Google Scholar 

  6. Hun Kwak J, Zhu H, Lee JH, Peden CHF, Szanyi J (2012) Chem Commun 48 39:4758–4760

    Article  Google Scholar 

  7. Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M (2009) Top Catal 52(13–20):1837–1841

    Article  CAS  Google Scholar 

  8. Klukowski D, Balle P, Geiger B, Wagloehner S, Kureti S, Kimmerle B, Baiker A, Grunwaldt J-D (2009) Appl Catal B 93(1):185–193

    Article  CAS  Google Scholar 

  9. Paolucci C, Verma AA, Bates SA, Kispersky VF, Miller JT, Gounder R, Delgass WN, Ribeiro FH, Schneider WF (2014) Angew Chem Int Ed 53(44):11828–11833

    Article  CAS  Google Scholar 

  10. Janssens TV, Falsig H, Lundegaard LF, Vennestrøm PN, Rasmussen SB, Moses PG, Giordanino F, Borfecchia E, Lomachenko KA, Lamberti C (2015) ACS Catal 5(5):2832–2845

    Article  CAS  Google Scholar 

  11. Boubnov A, Carvalho HWP, Doronkin DE, Günter T, Gallo E, Atkins AJ, Jacob CR, Grunwaldt J-D (2014) J Am Chem Soc 136(37):13006–13015

    Article  CAS  Google Scholar 

  12. Günter T, Carvalho HWP, Doronkin DE, Sheppard T, Glatzel P, Atkins AJ, Rudolph J, Jacob CR, Casapu M, Grunwaldt J-D (2015) Chem Commun 51(44):9227–9230

    Article  Google Scholar 

  13. Doronkin DE, Casapu M, Günter T, Müller O, Frahm R, Grunwaldt J-D (2014) J Phys Chem C 118(19):10204–10212

    Article  CAS  Google Scholar 

  14. Luo J-Y, Hou X, Wijayakoon P, Schmieg SJ, Li W, Epling WS (2011) Appl Catal B: Environ 102(1–2):110–119

    Article  CAS  Google Scholar 

  15. Hannemann S, Grunwaldt J-D, van Vegten N, Baiker A, Boye P, Schroer CG (2007) Catal Today 126(1–2):54–63

    Article  CAS  Google Scholar 

  16. Urakawa A, Maeda N, Baiker A (2008) Angew Chem 120(48):9396–9399

    Article  Google Scholar 

  17. Frahm R, Nachtegaal M, Stötzel J, Harfouche M, van Bokhoven JA, Grunwaldt J-D (2010) AIP Conf Proc 1234(1):251–255

    Article  CAS  Google Scholar 

  18. Singh J, Lamberti C, van Bokhoven JA (2010) Chem Soc Rev 39(12):4754–4766

    Article  CAS  Google Scholar 

  19. Grunwaldt J-D, Caravati M, Hannemann S, Baiker A (2004) Phys Chem Chem Phys 6(11):3037–3047

    Article  CAS  Google Scholar 

  20. Grunwaldt J-D, Schroer CG (2010) Chem Soc Rev 39(12):4741–4753

    Article  CAS  Google Scholar 

  21. Bergmann U, Glatzel P (2009) Photosynth Res 102(2–3):255–266

    Article  CAS  Google Scholar 

  22. Bauer M (2014) Phys Chem Chem Phys 16(27):13827–13837

    Article  CAS  Google Scholar 

  23. De Groot F (2001) Chem Rev 101(6):1779–1808

    Article  Google Scholar 

  24. Gallo E, Glatzel P (2014) Adv Mater 26(46):7730–7746

    Article  CAS  Google Scholar 

  25. Glatzel P, Bergmann U (2005) Coord Chem Rev 249(1–2):65–95

    Article  CAS  Google Scholar 

  26. Lee N, Petrenko T, Bergmann U, Neese F, DeBeer S (2010) J Am Chem Soc 132(28):9715–9727

    Article  CAS  Google Scholar 

  27. Pollock CJ, DeBeer S (2011) J Am Chem Soc 133(14):5594–5601

    Article  CAS  Google Scholar 

  28. Smolentsev G, Soldatov AV, Messinger J, Merz K, Weyhermüller T, Bergmann U, Pushkar Y, Yano J, Yachandra VK, Glatzel P (2009) J Am Chem Soc 131(36):13161–13167

    Article  CAS  Google Scholar 

  29. Mori RA, Paris E, Giuli G, Eeckhout SG, Kavčič M, Žitnik M, Bučar K, Pettersson LGM, Glatzel P (2010) Inorg Chem 49(14):6468–6473

    Article  CAS  Google Scholar 

  30. Singh J, Alayon E, Tromp M, Safonova OV, Glatzel P, Nachtegaal M, Frahm R, van Bokhoven JA (2008) Angew Chem. Int Ed 47(48):9260–9264

    Article  CAS  Google Scholar 

  31. Giordanino F, Borfecchia E, Lomachenko KA, Lazzarini A, Agostini G, Gallo E, Soldatov AV, Beato P, Bordiga S, Lamberti C (2014) J Phys Chem Lett 5(9):1552–1559

    Article  CAS  Google Scholar 

  32. Deka U, Lezcano-Gonzalez I, Warrender SJ, Lorena Picone A, Wright PA, Weckhuysen BM, Beale AM (2013) Micropor Mesopor Mat 166:144–152

    Article  CAS  Google Scholar 

  33. Zones SI (1985) US Patent 4544538

  34. Grunwaldt J-D, van Vegten N, Baiker A (2007) Chem Commun 44:4635–4637

    Article  Google Scholar 

  35. Ravel B, Newville M (2005) J Synchrotron Radiat 12(4):537–541

    Article  CAS  Google Scholar 

  36. Atkins AJ, Bauer M, Jacob CR (2013) Phys Chem Chem Phys 15(21):8095–8105

    Article  CAS  Google Scholar 

  37. Sarangi R (2013) Coord Chem Rev 257(2):459–472

    Article  CAS  Google Scholar 

  38. Kumar MS, Schwidder M, Grünert W, Brückner A (2004) J Catal 227(2):384–397

    Article  CAS  Google Scholar 

  39. Westre TE, Kennepohl P, DeWitt JG, Hedman B, Hodgson KO, Solomon EI (1997) J Am Chem Soc 119(27):6297–6314

    Article  CAS  Google Scholar 

  40. Wilke M, Farges F, Petit P-E, Brown GE, Martin F (2001) Am Mineral 86(5–6):714–730

    Article  CAS  Google Scholar 

  41. Yamamoto T (2008) X-Ray Spectrom 37(6):572–584

    Article  CAS  Google Scholar 

  42. Boubnov A, Lichtenberg H, Mangold S, Grunwaldt J-D (2015) J Synchrotron Radiat 22(2):410–426

    Article  CAS  Google Scholar 

  43. Clausen BS, Steffensen G, Fabius B, Villadsen J, Feidenhans’l R, Topsøe H (1991) J Catal 132(2):524–535

    Article  CAS  Google Scholar 

  44. Sankar G, Thomas JM (1999) Top Catal 8(1–2):1–21

    Article  CAS  Google Scholar 

  45. Kau LS, Spira-Solomon DJ, Penner-Hahn JE, Hodgson KO, Solomon EI (1987) J Am Chem Soc 109(21):6433–6442

    Article  CAS  Google Scholar 

  46. Vegelius JR, Kvashnina KO, Klintenberg M, Soroka IL, Butorin SM (2012) J Anal At Spectrom 27(11):1882–1888

    Article  CAS  Google Scholar 

  47. Ruggeri MP, Nova I, Tronconi E, Pihl JA, Toops TJ, Partridge WP (2015) Appl Catal B 166–167:181–192

    Article  Google Scholar 

Download references

Acknowledgments

We thank KIT, the Federal Ministry of Education and Research (BMBF, projects 05K10VKB and 05K13VK2) and the German Federal Environmental Foundation (DBU, T. Günter) for financial support. SLS (Villigen, Switzerland) and ESRF (Grenoble, France) are acknowledged for providing beam time. We thank Maarten Nachtegaal (SLS), Erik Gallo and Pieter Glatzel (ESRF) for support during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-D. Grunwaldt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günter, T., Doronkin, D.E., Boubnov, A. et al. The SCR of NOx with NH3 Examined by Novel X-ray Emission and X-ray Absorption Methods. Top Catal 59, 866–874 (2016). https://doi.org/10.1007/s11244-016-0561-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0561-7

Keywords

Navigation