Skip to main content
Log in

Effect of Mg/Al Ratio on Catalytic Behavior of Fischer–Tropsch Cobalt-Based Catalysts Obtained from Hydrotalcites Precursors

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Layered double hydroxides of the hydrotalcite (HT)-type materials have been considered as promising supports for Co-based Fischer–Tropsch synthesis (FTS) catalysts. In this work the effect of the Mg/Al ratio on the catalytic behavior of cobalt-based catalysts obtained from HTs precursors have been studied. Cobalt supported on Mg–Al oxides obtained from HTs Mg–Al precursors were prepared by wet impregnation method and calcined at 300 °C. The textural, structural and reducibility properties of the samples were characterized using different techniques. FTS was evaluated in a down-flow fixed-bed reactor at 20 bar, 250 °C and H2/CO ≈ 2 molar ratio. All catalysts were active and stable during 72 h testing time. The stability was improved by the presence of magnesium in the alumina support; however the CO conversion was negatively affected by increasing the Mg/Al ratio. The reducibility of cobalt decreased as the Mg/Al ratio increased, probably due to the strong Co–O–Mg interaction as evidenced by the formation of CoxOy–MgO mixed oxide. Furthermore, the activity of the catalysts was correlated with the H2-chemisorption measurements. The results suggest that HTs as Co-based catalysts were highly stable in FTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang Q, Deng W, Wang Y (2013) Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis. J Energy Chem 22:27–38. doi:10.1016/S2095-4956(13)60003-0

    Article  Google Scholar 

  2. Van de Loosdrecht J, Botes F, Ciobica I et al (2013) Fischer–Tropsch synthesis : catalysts and chemistry. Compr Inorg Chem II:525–557. doi:10.1016/B978-0-08-097774-4.00729-4

    Article  Google Scholar 

  3. Schulz H (1999) Short history and present trends of Fischer–Tropsch synthesis. Appl Catal A 186:3–12. doi:10.1016/S0926-860X(99)00160-X

    Article  CAS  Google Scholar 

  4. Van Der Laan G, Beenackers A (1999) Kinetics and selectivity of the Fischer-Tropsch synthesis: a literature review. Catal Rev 41:255–318. doi:10.1081/CR-100101170

    Article  Google Scholar 

  5. Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71:227–241. doi:10.1016/S0920-5861(01)00453-9

    Article  CAS  Google Scholar 

  6. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744. doi:10.1021/cr050972v

    Article  CAS  Google Scholar 

  7. Espinoza RL, Steynberg AP, Jager B, Vosloo AC (1999) Low temperature Fischer–Tropsch synthesis from a Sasol perspective. Appl Catal A 186:13–26. doi:10.1016/S0926-860X(99)00161-1

    Article  CAS  Google Scholar 

  8. Reuel RC, Bartholomew CH (1984) Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of Cobalt. J Catal 88:78–88. doi:10.1016/0021-9517(84)90111-8

    Article  Google Scholar 

  9. Reuel RC, Bartholomew CH (1984) The stoichiometries of H2 and CO adsorptions support and preparation on cobalt: effects of support and preparation. J Catal 77:63–77. doi:10.1016/0021-9517(84)90110-6

    Article  Google Scholar 

  10. Bartholomew CH, Reuel RC (1985) Cobalt-support interactions : their effects on adsorption and CO hydrogenation activity and selectivity properties. Ind Eng Chem Prod Res Dev 24:56–61. doi:10.1021/i300017a011

    Article  CAS  Google Scholar 

  11. Centi G, Perathoner S (2008) Catalysis by layered materials: a review. Microporous Mesoporous Mater 107:3–15. doi:10.1016/j.micromeso.2007.03.011

    Article  CAS  Google Scholar 

  12. Forano C, Hibino T, Leroux F, Taviot-Gueho C (2006) Layered double hydroxides. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science: developments in clay science. Elsevier, Amsterdam, pp 1021–1095

    Chapter  Google Scholar 

  13. Albertazzi S, Basile F, Vaccari A (2004) Catalytic properties of hydrotalcite-type anionic clays. In: Wypych F, Satyanarayana KG (eds) Clay surfaces. Fundamentals and applications. Elsevier, Amsterdam, pp 497–546

    Google Scholar 

  14. Cavani F, Trifiro F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301. doi:10.1016/0920-5861(91)80068-K

    Article  CAS  Google Scholar 

  15. Sels BF, De Vos DE, Jacobs PA (2001) Hydrotalcite-like anionic clays in catalytic organic reactions. Catal Rev 43:443–488. doi:10.1081/CR-120001809

    Article  CAS  Google Scholar 

  16. Wang Q, O’Hare D (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112:4124–4155. doi:10.1021/cr200434v

    Article  CAS  Google Scholar 

  17. Zhang Q, Kang J, Wang Y (2010) Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity. ChemCatChem 2:1030–1058. doi:10.1002/cctc.201000071

    Article  CAS  Google Scholar 

  18. Bruce L, Takos J, Turney TW (1990) Cobalt clays and double-layered hydroxides as Fischer-Tropsch catalysts. In: Comstock MJ (ed) Novel matererials in heterogeneous catalysis. American Chemical Society, Washington, pp 129–139

    Chapter  Google Scholar 

  19. Khassin AA, Yurieva TM, Kustova GN et al (2001) Cobalt–aluminum co-precipitated catalysts and their performance in the Fischer–Tropsch synthesis. J Mol Catal A 168:193–207. doi:10.1016/S1381-1169(00)00529-X

    Article  CAS  Google Scholar 

  20. Krylova MV, Kulukov AB, Knyazeva MI, Krylova AY (2008) Cobalt-containing catalysts made from layered double hydroxides for synthesis of hydrocarbons from carbon monoxide and hydrogen. Chem Technol Fuels Oils 44:36–39. doi:10.1007/s10553-008-0064-8

    Article  Google Scholar 

  21. Tsai Y-T, Mo X, Campos A et al (2011) Hydrotalcite supported Co catalysts for CO hydrogenation. Appl Catal A Gen 396:91–100. doi:10.1016/j.apcata.2011.01.043

    Article  CAS  Google Scholar 

  22. Fronzo Di A., Pirola C, Comazzi A, et al (2014) Co-based hydrotalcites as new catalysts for the Fischer-Tropsch synthesis process. Fuel 119:62–69. doi:10.1016/j.fuel.2013.11.014

    Article  Google Scholar 

  23. Tsyganok A, Sayari A (2006) Incorporation of transition metals into Mg–Al layered double hydroxides: coprecipitation of cations vs. their pre-complexation with an anionic chelator. J Solid State Chem 179:1830–1841. doi:10.1016/j.jssc.2006.03.029

    Article  CAS  Google Scholar 

  24. Navajas A, Campo I, Arzamendi G et al (2010) Synthesis of biodiesel from the methanolysis of sunflower oil using PURAL® Mg–Al hydrotalcites as catalyst precursors. Appl Catal B 100:299–309. doi:10.1016/j.apcatb.2010.08.006

    Article  CAS  Google Scholar 

  25. Díez V (2003) Effect of the chemical composition on the catalytic performance of MgyAlOx catalysts for alcohol elimination reactions. J Catal 215:220–233. doi:10.1016/S0021-9517(03)00010-1

    Article  Google Scholar 

  26. Tantirungrotechai J, Chotmongkolsap P, Pohmakotr M (2010) Synthesis, characterization, and activity in transesterification of mesoporous Mg–Al mixed-metal oxides. Microporous Mesoporous Mater 128:41–47. doi:10.1016/j.micromeso.2009.08.001

    Article  CAS  Google Scholar 

  27. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn, Wiley, New York, 1376

  28. Xu M, Iglesia E, Apesteguía CR et al (1998) Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal 178:499–510. doi:10.1006/jcat.1998.2161

    Article  Google Scholar 

  29. Product information. Pural ® MG 30, 70 (2007) Sasol Germany Gmb H, Inorganic specialty chemicals web site. http://www.sasolgermany.de/hydrotalcites.html. Accessed 25 Sep 2014

  30. Zhang Y, Xiong H, Liew K, Li J (2005) Effect of magnesia on alumina-supported cobalt Fischer-Tropsch synthesis catalysts. J Mol Catal A 237:172–181. doi:10.1016/j.molcata.2005.04.057

    Article  CAS  Google Scholar 

  31. Yao RS, Wu X, Du YL et al (2010) Study on the thermal decomposition behavior of MgAl-hydrotalcite compounds. Adv Mater Res 152–153:1451–1456. doi:10.4028/www.scientific.net/AMR.152-153.1451

    Article  Google Scholar 

  32. León M, Díaz E, Bennici S et al (2010) Adsorption of CO2 on hydrotalcite-derived mixed oxides: sorption mechanisms and consequences for adsorption irreversibility. Ind Eng Chem Res 49:3663–3671. doi:10.1021/ie902072a

    Article  Google Scholar 

  33. Jongsomjit B, Panpranot J, Goodwin JG (2001) Co-support compound formation in alumina-supported cobalt catalysts. J Catal 204:98–109. doi:10.1006/jcat.2001.3387

    Article  CAS  Google Scholar 

  34. Kloprogge JT, Frost RL (1999) Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites. J Solid State Chem 146:506–515. doi:10.1006/jssc.1999.8413

    Article  CAS  Google Scholar 

  35. Ulla M, Spretz R, Lombardo E et al (2001) Catalytic combustion of methane on Co/MgO: characterisation of active cobalt sites. Appl Catal B 29:217–229. doi:10.1016/S0926-3373(00)00204-6

    Article  CAS  Google Scholar 

  36. Xiao T, Ji S, Wang H et al (2001) Methane combustion over supported cobalt catalysts. J Mol Catal A 175:111–123. doi:10.1016/S1381-1169(01)00205-9

    Article  CAS  Google Scholar 

  37. Moulder JF, Stickle WF, Sobol PE, Bobem KD (1992) Handbook of X-ray photoelectron spectroscopy. A reference book of standard spectra for identification and interpretation of XPS Data, 1995th edn. Physical Electronics, Eden Prairie, pp 30–194

    Google Scholar 

  38. Rodrigues A, da Costa P, Méthivier C, Dzwigaj S (2011) Controlled preparation of CoPdSiBEA zeolite catalysts for selective catalytic reduction of NO with methane and their characterisation by XRD, DR UV–Vis, TPR, XPS. Catal Today 176:72–76. doi:10.1016/j.cattod.2011.03.013

    Article  CAS  Google Scholar 

  39. Fu L, Liu Z, Liu Y et al (2005) Beaded cobalt oxide nanoparticles along carbon nanotubes: towards more highly integrated electronic devices. Adv Mater 17:217–221. doi:10.1002/adma.200400833

    Article  CAS  Google Scholar 

  40. Sexton BA, Hughes AE, Turney TW (1986) An XPS and TPR study of the reduction of promoted catalysts. J Catal 97:390–406. doi:10.1016/0021-9517(86)90359-3

    Article  CAS  Google Scholar 

  41. Van’T Blink HFJ, Prins R (1986) Characterization of supported cobalt catalysts and cobalt-rhodium catalysts. J Catal 97:188–199. doi:10.1016/0021-9517(86)90049-7

    Article  Google Scholar 

  42. Viswanathan B, Gopalakrishnan R (1986) Effect of support and promoter in Fischer-Tropsch cobalt catalysts. J Catal 99:342–348. doi:10.1016/0021-9517(86)90359-3

    Article  CAS  Google Scholar 

  43. Brown R, Cooper ME, Whan DA (1982) Temperature programmed reduction of alumina-supported iron, cobalt and nickel bimetallic catalysts. Appl Catal 3:177–186. doi:10.1016/0166-9834(82)80090-0

    Article  CAS  Google Scholar 

  44. Jacobs G, Das TK, Zhang Y et al (2002) Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A 233:263–281. doi:10.1016/S0926-860X(02)00195-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Colciencias for financing the Project 1115-521-28804. To Universidad de Antioquia for the financial support through Programa Sostenibilidad 2014–2015. Angélica Forgionny wishes to thank to Colciencias for her Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Moreno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 413 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forgionny, A., Fierro, J.L.G., Mondragón, F. et al. Effect of Mg/Al Ratio on Catalytic Behavior of Fischer–Tropsch Cobalt-Based Catalysts Obtained from Hydrotalcites Precursors. Top Catal 59, 230–240 (2016). https://doi.org/10.1007/s11244-015-0430-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0430-9

Keywords

Navigation