Skip to main content
Log in

Quantitative assessment of the nature and strength of Au‒dithiolate bond in gold(III) bis(1,2-dithiolate) homoleptic complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Quantum chemical calculations at the BP86/def2-TZVP and M06/def2-TZVP levels of theory have been carried out to investigate the nature and strength of the Au-dithiolate bond in gold(III) bis(1,2-dithiolate) homoleptic complexes [AuL2] where L represents various ligands: ethylene-1,2-dithiolate (edt2−), 1,2-bis(methyl)ethylenedithiolate (dmedt2−), 1,2-maleonitrile-1,2-dithiolate (mnt2−), benzene-1,2- dithiolate (bdt2−), 4,5-dimethylbenzene-1,2-dithiolate (dmbdt2−), and 4,5-dicyanobenzene-1,2-dithiolate (dcbdt2−). The study involved calculating the interaction energies between the fragments as well as assessing the deformation energies of both the Au3+ ion and the dithiolate ions. Furthermore, the total interaction energy and the stabilization energy of the complexes were determined and compared. The investigation also included conducting an energy decomposition analysis (EDA) to examine the characteristics of the bonds between Au(III) and bis(dithiolate) in these complexes. The results demonstrated that the complexes containing dithiolates with ‒CN substitutions ([Au(mnt)2] and [Au(dcbdt)2]) have smaller values of stabilization and interaction energies compared to other ones. The analysis of Au − (bis)dithiolate bonds revealed that the electrostatic interactions make a more substantial contribution to the total attractive interactions compared to the orbital interactions. Indeed, the dominant role in stabilizing the complexes is played by the electrostatic attractions between the Au3+ and the dithiolate ligands. Moreover, both the Au → Lπ and Au → Lσ backdonations in all studied complexes are very weak.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Kato R (2007) Chem Rev 104:5319–5346

    Article  Google Scholar 

  2. Deplano P, Pilia L, Espa D, Mercuri ML, Serpe A (2010) Coord Chem Rev 254:1434–1447

    Article  CAS  Google Scholar 

  3. Bonneval BG, Chinga KIM, Alaryc F, Bui T, Valadea L (2010) Coord Chem Rev 254:1457–1467

    Article  Google Scholar 

  4. Pop F, Avarvari N (2017) Coord Chem Rev 346:20–31

    Article  CAS  Google Scholar 

  5. Kusamoto T, Nishihara H (2019) Coord Chem Rev 380:419–439

    Article  CAS  Google Scholar 

  6. Pitchaimani J, Ni SF, Dang L (2020) Coord Chem Rev 420:213398

    Article  CAS  Google Scholar 

  7. Periyasamy G, Burton NA, Hillier IH, Vincent MA, Disley H, McMaster J, Garner CD (2007) Faraday Discuss 135:469–488

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Herman ZS, Kirchner RF, Loew GH, Mueller-Westerhoff UT, Nazzal A, Zerner MC (1982) Inorg Chem 21:46–56

    Article  CAS  Google Scholar 

  9. Ray K, George SD, Solomon EI, Wieghardt K, Neese F (2007) Chem Eur J 13:2783–2790

    Article  CAS  PubMed  Google Scholar 

  10. Alarym FJ, Heully L, Scemama A, Bonneval BG, Chane-Ching KI, Caffarel M (2010) Theor Chem Acc 126:243–255

    Article  Google Scholar 

  11. Eisenberg R, Gray HB (2011) Inorg Chem 50:9741–9751

    Article  CAS  PubMed  Google Scholar 

  12. Bushnell EAC, Boyd RJ (2015) J Phys Chem A 119:911–918

    Article  CAS  PubMed  Google Scholar 

  13. Schlimgen AW, Mazziotti DA (2017) J Phys Chem A 121:9377–9384

    Article  CAS  PubMed  Google Scholar 

  14. Lim BS, Fomitchev DV, Holm RH (2001) Inorg Chem 40:4257–4262

    Article  CAS  PubMed  Google Scholar 

  15. Curreli S, Deplano P, Faulmann C, Ienco A, Mealli C, Mercuri ML, Pilia L, Pintus G, Serpe A, Trogu EF (2004) Inorg Chem 43:5069–5079

    Article  CAS  PubMed  Google Scholar 

  16. Ray K, Begum A, Weyhermuller T, Piligkos S, Slageren J, Neese F, Wieghardt K (2005) J Am Chem Soc 127:4403–4415

    Article  CAS  PubMed  Google Scholar 

  17. Herebian D, Wieghardt KE, Neese F (2003) J Am Chem Soc 125:10997–11005

    Article  CAS  PubMed  Google Scholar 

  18. Ray K, Weyhermüller T, Neese F, Wieghardt K (2005) Inorg Chem 44:5345–5360

    Article  CAS  PubMed  Google Scholar 

  19. Bachler V, Olbrich G, Neese F, Wieghardt K (2002) Inorg Chem 41:4179–4193

    Article  CAS  PubMed  Google Scholar 

  20. Petrenko T, Ray K, Wieghardt KE, Neese F (2006) J Am Chem Soc 128:4422–4436

    Article  CAS  PubMed  Google Scholar 

  21. Waters T, Woo HK, Wang XB, Wang LS (2006) J Am Chem Soc 128:4282–4291

    Article  CAS  PubMed  Google Scholar 

  22. Waters T, Wang XB, Woo HK, Wang LS (2006) Inorg Chem 45:5841–5851

    Article  CAS  PubMed  Google Scholar 

  23. Liu X, Hou GL, Wang X, Wang XB (2016) J Phys Chem A 120:2854–2862

    Article  CAS  PubMed  Google Scholar 

  24. Plyusnin VF, Pozdnyakov IP, Grivin VP, Solovyev AI, Lemmetyinen H, Tkachenko NV, Larionov SV (2014) Dalton Trans 43:17766–17774

    Article  CAS  PubMed  Google Scholar 

  25. Kirk ML, McNaughton RL, Helton ME (2003) The Electronic Structure and Spectroscopy of Metallo-Dithiolene Complexes. In: E.I. Stiefel (Ed.), Progress in Inorganic Chemistry, John Wiley & Sons, Inc. Vol. 52.

  26. Pandey KK, Lein M, Frenking G (2003) J Am Chem Soc 125:1660–1668

    Article  CAS  PubMed  Google Scholar 

  27. Krapp A, Pandey KK, Frenking G (2007) J Am Chem Soc 129:7596–7610

    Article  CAS  PubMed  Google Scholar 

  28. Caramori GF, Frenking G (2007) Organometallics 26:5815–5825

    Article  CAS  Google Scholar 

  29. Erhardt S, Frenking G (2009) J Organomet Chem 694:1091–1100

    Article  CAS  Google Scholar 

  30. Caramori GF, Frenking G (2008) Theor Chem Acc 120:351–361

    Article  CAS  Google Scholar 

  31. Prabusankar G, Gemel C, Parameswaran P, Flener C, Frenking G (2009) Fischer RA 48:5526–5529

    CAS  Google Scholar 

  32. Gámez JA, Tonner R, Frenking G (2010) Organometallics 29:5676–5680

    Article  Google Scholar 

  33. Bayat M, Hopffgarten M, Salehzadeh S, Frenking G (2011) J Organomet Chem 696:2976–2984

    Article  CAS  Google Scholar 

  34. Najafi L, Gholiee Y (2023) J Organomet Chem 1002:122909

    Article  CAS  Google Scholar 

  35. Gholiee Y, Salehzadeh S (2023) Inorg Chem Res 7:14–21

    Google Scholar 

  36. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  ADS  CAS  Google Scholar 

  37. Perdew JD (1986) Phys Rev B 33:8822–8824

    Article  ADS  CAS  Google Scholar 

  38. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  39. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian Inc., Wallingford CT., 2009.

  41. Frenking G, Frohlich N (2000) Chem Rev 100:717–774

    Article  CAS  PubMed  Google Scholar 

  42. Pan S, Zhao L, Rasika HV, Frenking G (2018) Inorg Chem 57:7780–7791

    Article  CAS  PubMed  Google Scholar 

  43. Velazquez A, Fernandez I, Frenking G, Merino G (2007) Organometallics 26:4731–4736

    Article  CAS  Google Scholar 

  44. Salehzadeh S, Maleki F (2016) J Comput Chem 37:2799–2807

    Article  CAS  PubMed  Google Scholar 

  45. Gholiee Y, Salehzadeh S, Khodaveisi S (2019) New J Chem 43:7797–7805

    Article  CAS  Google Scholar 

  46. Hokmi S, Salehzadeh S, Gholiee Y (2021) J Comput Chem 42:1354–1363

    Article  CAS  PubMed  Google Scholar 

  47. Nassery-Thekyeh Z, Gholiee Y (2022) Comput Theor Chem 1215:113814

    Article  CAS  Google Scholar 

  48. Hokmi S, Salehzadeh S, Gholiee Y (2022) New J Chem 46:2678–2686

    Article  CAS  Google Scholar 

  49. Morokuma K (1971) J Chem Phys 55:1236–1244

    Article  ADS  CAS  Google Scholar 

  50. Ziegler T, Rauk A (1977) Theor Chim Acta 46:1–10

    Article  CAS  Google Scholar 

  51. ADF, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, 2013.

  52. Wang HMJ, Vasam CS, Tsai TYR, Chen SH, Chang AHH, Lin IJB (2005) Organometallics 24:486

    Article  Google Scholar 

  53. Ehlich H, Schier A, Schmidbaur H (2002) Z Naturforsch B 57:890

    Article  CAS  Google Scholar 

  54. Madhu V, Das SK (2006) Eur J Inorg Chem 2006:1505–1514

    Article  Google Scholar 

  55. Jørgensen CK (1971) Modern aspects of ligand field theory. North-Holland, American Elsevier, New York, Amsterdam, London

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Malayer University for financial support.

Author information

Authors and Affiliations

Authors

Contributions

"H.M. Investigation, Resources, Writing original draft; Y.G. Formal analysis, Investigation, Validation, Supervision. All authors reviewed the manuscript."

Corresponding author

Correspondence to Yasin Gholiee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 160 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehri, H., Gholiee, Y. Quantitative assessment of the nature and strength of Au‒dithiolate bond in gold(III) bis(1,2-dithiolate) homoleptic complexes. Transit Met Chem (2024). https://doi.org/10.1007/s11243-024-00579-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11243-024-00579-6

Keywords

Navigation