Skip to main content
Log in

Effect of precursors on structural, optical and surface properties of ZnO thin film prepared by spray pyrolysis method: efficient removal of Cu (II) from wastewater

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

In this study, ZnO thin films were prepared with different precursors using the spray pyrolysis technique, zinc acetate (ZAC-0.2), zinc chloride (ZCL-0.2), and dehydrated zinc nitrate (ZNH-0.2) precursors. The formation of ZnO thin films was confirmed using a variety of characterization techniques, including UV–vis spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The primary aim of this study is to explore how different precursor materials affect the properties of ZnO thin films and to demonstrate the efficacy of these films in removing copper ions from wastewater. The structure, microstructure, and optical properties of these materials were investigated, along with their adsorption activity. The results revealed that all ZnO films exhibited a hexagonal wurtzite crystal structure. The ZAC-0.2 sample demonstrated the highest transparency within the 400–800 nm wavelength range. The sample with the least band gap was ZNH-0.2, with a value of 1.96 eV, and exhibited the highest Urbach energy (Eurb) at 1.150 eV. Moreover, the ZnO thin films displayed high efficiency in removing 80% of copper ions from an aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data are contained within the article.

References

  1. Zhang Y, Wu C, Zheng Y, Guo T (2012) Synthesis and efficient field emission characteristics of patterned ZnO nanowires. J Semicond 33:023001. https://doi.org/10.1088/1674-4926/33/2/023001

    Article  CAS  Google Scholar 

  2. Huafu Z, Hanfa L, Chengxin L et al (2010) Low-temperature deposition of transparent conducting Mn–W co-doped ZnO thin films. J Semicond 31:83005. https://doi.org/10.1088/1674-4926/31/8/083005

    Article  CAS  Google Scholar 

  3. Zuo C, Wen J, Zhong C (2012) First-principles study of the electronic structures and optical properties of C–F–Be doped wurtzite ZnO. J Semicond 33:072001. https://doi.org/10.1088/1674-4926/33/7/072001

    Article  CAS  Google Scholar 

  4. Zhu X, Wu H, Wang S et al (2009) Optical and electrical properties of N-doped ZnO and fabrication of thin-film transistors. J Semicond 30:33001. https://doi.org/10.1088/1674-4926/30/3/033001

    Article  CAS  Google Scholar 

  5. Xiong C, Yao RH, Wan WJ, Xu JX (2014) Fabrication and electrical characterization of ZnO rod arrays/CuSCN heterojunctions. Optik (Stuttg) 125:785–788. https://doi.org/10.1016/j.ijleo.2013.07.080

    Article  CAS  Google Scholar 

  6. Pakhuruddin MZ, Yusof Y, Ibrahim K, Abdul Aziz A (2013) Fabrication and characterization of zinc oxide anti-reflective coating on flexible thin film microcrystalline silicon solar cell. Optik (Stuttg) 124:5397–5400. https://doi.org/10.1016/j.ijleo.2013.03.117

    Article  CAS  Google Scholar 

  7. Kang DW, Kuk SH, Ji KS et al (2011) Effects of ITO precursor thickness on transparent conductive Al doped ZnO film for solar cell applications. Sol Energy Mater Sol Cells 95:138–141. https://doi.org/10.1016/j.solmat.2010.04.068

    Article  CAS  Google Scholar 

  8. Mariappan R, Ponnuswamy V, Chandra Bose A et al (2014) Structural, optical and electrical characterization of nebulizer-sprayed ZnO nano-rods. Superlattices Microstruct 65:184–194. https://doi.org/10.1016/j.spmi.2013.10.005

    Article  CAS  Google Scholar 

  9. Castañeda L, Moreno-Valenzuela J, Torres-Torres C (2013) Chemisorptive detection by electrical and nonlinear optical absorption properties of a nanostructured ruthenium-doped zinc oxide film. Optik (Stuttg) 124:5209–5213. https://doi.org/10.1016/j.ijleo.2013.03.093

    Article  CAS  Google Scholar 

  10. Yu H, Fan H, Wang X, Wang J (2014) Synthesis and characterization of ZnO microstructures via microwave-assisted hydrothermal synthesis process. Optik (Stuttg) 125:1461–1464. https://doi.org/10.1016/j.ijleo.2013.09.009

    Article  CAS  Google Scholar 

  11. Bhati VS, Hojamberdiev M, Kumar M (2020) Enhanced sensing performance of ZnO nanostructures-based gas sensors: a review. Energy Rep 6:46–62. https://doi.org/10.1016/j.egyr.2019.08.070

    Article  Google Scholar 

  12. Kumari N, Patel SR, Gohel JV (2018) Optical and structural properties of ZnO thin films prepared by spray pyrolysis for enhanced efficiency perovskite solar cell application. Opt Quantum Electron 50:180. https://doi.org/10.1007/s11082-018-1376-5

    Article  CAS  Google Scholar 

  13. Vanmaekelbergh D, van Vugt LK (2011) ZnO nanowire lasers. Nanoscale 3:2783–2800. https://doi.org/10.1039/C1NR00013F

    Article  CAS  PubMed  Google Scholar 

  14. Lim J-H, Kang C-K, Kim K-K et al (2006) UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Adv Mater 18:2720–2724. https://doi.org/10.1002/adma.200502633

    Article  CAS  Google Scholar 

  15. Islam MR, Rahman M, Farhad SFU, Podder J (2019) Structural, optical and photocatalysis properties of sol–gel deposited Al-doped ZnO thin films. Surf Interfaces 16:120–126. https://doi.org/10.1016/j.surfin.2019.05.007

    Article  CAS  Google Scholar 

  16. Saha JK, Bukke RN, Mude NN, Jang J (2020) Significant improvement of spray pyrolyzed ZnO thin film by precursor optimization for high mobility thin film transistors. Sci Rep 10:8999. https://doi.org/10.1038/s41598-020-65938-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chakrabarti S, Banerjee P, Mitra P, et al. (2020) Zinc oxide-based nanomaterials for environmental applications. In: Handbook smart photocatalytic mater. Elsevier, Netherlands, p 73

  18. Rahemi Ardekani S, Sabour Rouh Aghdam A, Nazari M et al (2019) A comprehensive review on ultrasonic spray pyrolysis technique: mechanism, main parameters and applications in condensed matter. J Anal Appl Pyrolysis 141:104631. https://doi.org/10.1016/j.jaap.2019.104631

    Article  CAS  Google Scholar 

  19. Lehraki N, Aida MS, Abed S et al (2012) ZnO thin films deposition by spray pyrolysis: influence of precursor solution properties. Curr Appl Phys 12:1283–1287. https://doi.org/10.1016/j.cap.2012.03.012

    Article  Google Scholar 

  20. Jayaraman VK, Hernández-Gordillo A, Bizarro M (2018) Importance of precursor type in fabricating ZnO thin films for photocatalytic applications. Mater Sci Semicond Process 75:36–42. https://doi.org/10.1016/j.mssp.2017.11.015

    Article  CAS  Google Scholar 

  21. Omar NAS, Irmawati R, Fen YW et al (2022) Surface refractive index sensor based on titanium dioxide composite thin film for detection of cadmium ions. Meas J Int Meas Confed 187:110287. https://doi.org/10.1016/j.measurement.2021.110287

    Article  Google Scholar 

  22. Abdul Razak K, Che Halin DS, Abdullah MMA et al (2022) Factors of controlling the formation of titanium dioxide (TiO2) synthesized using sol–gel method—a short review. J Phys Conf Ser 2169:12018. https://doi.org/10.1088/1742-6596/2169/1/012018

    Article  Google Scholar 

  23. Patel NP, Chauhan KV (2023) Impact of deposition time and working pressure on delay of ice formation on aluminum doped zinc oxide thin films. Thin Solid Films 769:139750. https://doi.org/10.1016/j.tsf.2023.139750

    Article  CAS  Google Scholar 

  24. Patel NP, Chauhan KV, Desai MK (2023) Effects of power and temperature on the structural, anti-icing, wettability, and optical properties of zinc oxide thin films. Ceram Int 49:26943–26949. https://doi.org/10.1016/j.ceramint.2023.05.233

    Article  CAS  Google Scholar 

  25. Li Z, Gardner DW, Xia Y et al (2023) Ordered porous RGO/SnO2 thin films for ultrasensitive humidity detection. J Mater Chem C. https://doi.org/10.1039/D3TC00983A

    Article  Google Scholar 

  26. Yadav S, Yadav K, Dhar R, Mohan D (2023) Synthesis and characterization of thermally evaporated Er-doped SnO2 thin films for photonic applications. Micro Nanostruct 174:207493. https://doi.org/10.1016/j.micrna.2022.207493

    Article  CAS  Google Scholar 

  27. Cho S-H, Park J-S, Kim JH et al (2023) Oxygen-related defect engineering of amorphous vanadium pentoxide cathode for achieving high-performance thin-film aqueous zinc-ion batteries. ACS Appl Energy Mater 6:2719–2727. https://doi.org/10.1021/acsaem.2c03055

    Article  CAS  Google Scholar 

  28. Durmuş Ç, Akan T (2023) Vanadium pentoxide thin films deposited by the thermionic vacuum arc plasma. Thin Solid Films 770:139764. https://doi.org/10.1016/j.tsf.2023.139764

    Article  CAS  Google Scholar 

  29. Maqsood S, Ali K, Ali Z, Iqbal I (2023) Impact of amorphous and crystalline tungsten trioxide (WO3) thin films as an antireflection material for silicon (c-Si) solar cells. J Electron Mater 52:165–176. https://doi.org/10.1007/s11664-022-09939-3

    Article  CAS  Google Scholar 

  30. Reddy GVA, Naveen Kumar K, Sattar SA et al (2023) Effect of post annealing on DC magnetron sputtered tungsten oxide (WO3) thin films for smartwindow applications. Phys B Condens Matter 664:414996. https://doi.org/10.1016/j.physb.2023.414996

    Article  CAS  Google Scholar 

  31. Tański T, Zaborowska M, Jarka P, Woźniak A (2022) Hydrophilic ZnO thin films doped with ytterbium and europium oxide. Sci Rep 12:11329. https://doi.org/10.1038/s41598-022-14899-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bagheri M, Azizian S, Jaleh B, Chehregani A (2014) Adsorption of Cu(II) from aqueous solution by micro-structured ZnO thin films. J Ind Eng Chem 20:2439–2446. https://doi.org/10.1016/j.jiec.2013.10.024

    Article  CAS  Google Scholar 

  33. Scherrer P (1918) Göttinger nachrichten math. Phys 2:98–100

    Google Scholar 

  34. Fethiza Tedjani C, Ben Mya O, Rebiai A et al (2019) Crude oil sensing using carbon nano structures synthetized from Phoenix dactylifera L. Cellulose Sci Rep 9:17806. https://doi.org/10.1038/s41598-019-54417-2

    Article  CAS  PubMed  Google Scholar 

  35. Kamani M, Ajalloeian R (2019) Evaluation of engineering properties of some carbonate rocks trough corrected texture coefficient. Geotech Geol Eng 37:599–614. https://doi.org/10.1007/s10706-018-0630-8

    Article  Google Scholar 

  36. Wu Y, Chen Z, Nan P et al (2019) Lattice strain advances thermoelectrics. Joule 3:1276–1288. https://doi.org/10.1016/j.joule.2019.02.008

    Article  CAS  Google Scholar 

  37. Manikandan B, Endo T, Kaneko S et al (2018) Properties of sol gel synthesized ZnO nanoparticles. J Mater Sci Mater Electron 29:9474–9485. https://doi.org/10.1007/s10854-018-8981-8

    Article  CAS  Google Scholar 

  38. Khan ZR, Zulfequar M, Khan MS (2010) Optical and structural properties of thermally evaporated cadmium sulphide thin films on silicon (1 0 0) wafers. Mater Sci Eng B Solid-State Mater Adv Technol 174:145–149. https://doi.org/10.1016/j.mseb.2010.03.006

    Article  CAS  Google Scholar 

  39. Chala S, Sengouga N, Yakuphanoğlu F et al (2018) Extraction of ZnO thin film parameters for modeling a ZnO/Si solar cell. Energy 164:871–880. https://doi.org/10.1016/j.energy.2018.09.035

    Article  CAS  Google Scholar 

  40. Terea H, Selloum D, Rebiai A et al (2023) Preparation and characterization of cellulose/ZnO nanoparticles extracted from peanut shells: effects on antibacterial and antifungal activities. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-023-03959-7

    Article  Google Scholar 

  41. Bouafia A, Meneceur S, Chami S et al (2023) Removal of hydrocarbons and heavy metals from petroleum water by modern green nanotechnology methods. Sci Rep 13:5637. https://doi.org/10.1038/s41598-023-32938-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Daoudi H, Bouafia A, Meneceur S et al (2022) Secondary metabolite from Nigella sativa seeds mediated synthesis of silver oxide nanoparticles for efficient antioxidant and antibacterial activity. J Inorg Organomet Polym Mater 32:4223–4236. https://doi.org/10.1007/s10904-022-02393-y

    Article  CAS  Google Scholar 

  43. Norouzzadeh P, Mabhouti K, Golzan MM, Naderali R (2020) Investigation of structural, morphological and optical characteristics of Mn substituted Al-doped ZnO NPs: A Urbach energy and Kramers-Kronig study. Optik (Stuttg) 204:164227. https://doi.org/10.1016/j.ijleo.2020.164227

    Article  CAS  Google Scholar 

  44. Albertsson J, Abrahams SC, Kvick A (1989) Atomic displacement, anharmonic thermal vibration, expansivity and pyroelectric coefficient thermal dependences in ZnO. Acta Crystallogr Sect B 45:34–40

    Article  Google Scholar 

  45. Bouafia A, Laouini SE, Tedjani ML et al (2022) Green biosynthesis and physicochemical characterization of Fe3O4 nanoparticles using Punica granatum L. fruit peel extract for optoelectronic applications. Text Res J 92:2685–2696. https://doi.org/10.1177/00405175211006671

    Article  CAS  Google Scholar 

  46. Mahjoubian M, Naeemi AS, Sheykhan M (2021) Toxicological effects of Ag2O and Ag2CO3 doped TiO2 nanoparticles and pure TiO2 particles on zebrafish (Danio rerio). Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128182

    Article  PubMed  Google Scholar 

  47. Dara PK, Mahadevan R, Digita PA et al (2020) Synthesis and biochemical characterization of silver nanoparticles grafted chitosan (Chi-Ag-NPs): in vitro studies on antioxidant and antibacterial applications. SN Appl Sci. https://doi.org/10.1007/s42452-020-2261-y

    Article  Google Scholar 

  48. Akter M, Sikder MT, Rahman MM et al (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16. https://doi.org/10.1016/j.jare.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  49. Elyamny S, Eltarahony M, Abu-Serie M et al (2021) One-pot fabrication of Ag @Ag2O core–shell nanostructures for biosafe antimicrobial and antibiofilm applications. Sci Rep. https://doi.org/10.1038/s41598-021-01687-4

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ozdal M, Gurkok S (2022) Recent advances in nanoparticles as antibacterial agent. Admet DMPK 10:115–129. https://doi.org/10.5599/admet.1172

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yin IX, Zhang J, Zhao IS, Mei ML et al (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed 15:2555–2562. https://doi.org/10.2147/ijn.s246764

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

NA, AB, BC, OBM, AC, MWA, and CS were involved in conceptualization; NA, AB, BC, OBM, AC, MWA, and CS contributed to methodology; NA, AB, BC, OBM, AC, MWA, and CS were involved in validation; NA, AB, BC, OBM, AC, and CS contributed to investigation; NA, AB, BC, OBM, AC, MWA, and CS were involved in resources; NA, AB, BC, OBM, AC, and CS contributed to data curation; NA, AB, BC, OBM, AC, and CS were involved in writing—original draft preparation; NA, AB, BC, OBM, AC, and CS contributed to writing—review and editing; AB, OBM, CS were involved in supervision; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Abderrhmane Bouafia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. Financial or otherwise.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allag, N., Bouafia, A., Chemsa, B. et al. Effect of precursors on structural, optical and surface properties of ZnO thin film prepared by spray pyrolysis method: efficient removal of Cu (II) from wastewater. Transit Met Chem 49, 39–51 (2024). https://doi.org/10.1007/s11243-023-00560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-023-00560-9

Navigation