Skip to main content
Log in

Azadithiolate-bridged [FeFe]-hydrogenase mimics with bridgehead N-derivation: structural and electrochemical investigations

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

To further develop the active site mimics of azadithiolate-bridged [FeFe]-hydrogenases, a series of new diiron azadithiolate complexes [{(μ-SCH2)2N(C6H4CH2CH2OC(O)R)}Fe2(CO)6] (R = CH2C6H4Me-p, 2; C6H5, 3; CH3, 4) bearing bridgehead N-derivation were successfully prepared by facile esterification reaction of parent complex [{(μ-SCH2)2N(C6H4CH2CH2OH)}Fe2(CO)6] (1) and different carboxyl compounds RCO2H in the presence of 4-dimethylaminopyridine (DMAP) as catalyst and dicyclohexylcarbodiimide (DCC) as dehydrating reagent. Complexes 2–4 have been fully characterized by means of elemental analysis, FT-IR and NMR (1H, 13C) spectroscopies, and especially for 2 by X-ray crystallography. Further electrochemical and electrocatalytic properties of target complexes 24 and reference analogue 1 were studied and compared in the absence and presence of acetic acid (HOAc) as a proton source by cyclic voltammetry (CV), indicating that they may be considered as the active biomimetic electrocatalysts for proton reduction to hydrogen (H2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li YL, Rauchfuss TB (2016) Chem Rev 116:7043–7077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Chem Rev 114:4081–4148

    Article  CAS  PubMed  Google Scholar 

  3. Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP (2021) Chem Soc Rev 50:1688–1784

    Article  Google Scholar 

  4. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853–1858

    Article  CAS  PubMed  Google Scholar 

  5. Nicolet Y, Piras C, Legrand P, Hatchikian EC, Fontecilla-Camps JC (1999) Structure 17:13–23

    Article  Google Scholar 

  6. Esselborn J, Lambertz C, Adamska-Venkatesh A, Simmons T, Berggren G, Nothl J, Siebel J, Hemschemeier A, Artero V, Reijerse E, Fontecave M, Lubitz W, Happe T (2013) Nat Chem Biol 9:607–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lambertz C, Chernev P, Klingan K, Leidel N, Sigfridsson KGV, Happe T, Haumann M (2014) Chem Sci 5:1187–1203

    Article  CAS  Google Scholar 

  8. Erdem ÖF, Schwartz L, Stein M, Silakov A, Kaur-Ghumaan S, Huang P, Ott S, Reijerse EJ, Lubitz W (2011) Angew Chem Int Ed 50:1439–1443

    Article  CAS  Google Scholar 

  9. Bethel RD, Darensbourg MY (2013) Nature 499:40–41

    Article  CAS  PubMed  Google Scholar 

  10. Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Nature 499:66–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Birrell JA, Rodríguez-Maciá P, Reijerse EJ, Martini MA, Lubitz W (2021) Coord Chem Rev 449:214191

    Article  CAS  Google Scholar 

  12. Gao S, Fan WH, Liu Y, Jiang DY, Duan Q (2020) Int J Hyrogen Energ 45:4503–4527

    Google Scholar 

  13. Unwin DG, Ghosh S, Ridley F, Richmond MG, Holt KB, Hogarth G (2019) Dalton Trans 48:6174–6190

    Article  CAS  PubMed  Google Scholar 

  14. Xiao ZY, Zhong W, Liu XM (2021) Dalton Trans 51:40–49

    Article  PubMed  Google Scholar 

  15. Lü S, Huang HL, Zhang RF, Ma CL, Li QL, He J, Yang J, Li T, Li YL (2020) Inorg Chem Front 7:2352–2361

    Article  Google Scholar 

  16. Hu MY, Li JR, Jing XB, Tian H, Zhao PH (2019) Inorg Chim Acta 495:119021

    Article  CAS  Google Scholar 

  17. Li JR, Hu MY, Lü S, Gu XL, Jing XB, Zhao PH (2020) Appl Organomet Chem 34:e5929

    CAS  Google Scholar 

  18. Hu MY, Zhao PH, Li JR, Gu XL, Jing XB, Liu XF (2020) Appl Organomet Chem 34:e5523

    CAS  Google Scholar 

  19. Zhao PH, Hu MY, Li JR, Ma ZY, Wang YZ, He J, Li YL, Liu XF (2019) Organometallics 38:385–394

    Article  CAS  Google Scholar 

  20. Gu XL, Li JR, Li QL, Guo Y, Jing XB, Chen ZB, Zhao PH (2021) J Inorg Biochem 219:111449

    Article  CAS  PubMed  Google Scholar 

  21. Salyi S, Kritikos M, Åkermark B, Sun L (2003) Chem Eur J 9:557–560

    Article  CAS  PubMed  Google Scholar 

  22. Thomas CM, Rudiger O, Liu TB, Carson CE, Hall MB, Darensbourg MY (2007) Organometallics 26:3976–3984

    Article  CAS  Google Scholar 

  23. Zhao PH, Liu YQ, Zhao GZ (2013) Polyhedron 53:144–149

    Article  CAS  Google Scholar 

  24. Song LC, Li CG, Gao J, Yin BS, Luo X, Zhang XG, Bao HL, Hu QM (2008) Inorg Chem 47:4545–4553

    Article  CAS  PubMed  Google Scholar 

  25. Song LC, Liu XF, Ming JB, Ge JH, Xie ZJ, Hu QM (2010) Organometallics 29:610–617

    Article  CAS  Google Scholar 

  26. Apfel UP, Kowol CR, Kloss F, Görls H, Keppler BK, Weigand W (2011) J Organomet Chem 696:1084–1088

    Article  CAS  Google Scholar 

  27. Zhao PH, Li JR, Ma ZY, Han HF, Qu YP, Lu BP (2021) Inorg Chem Front 8:2107–2118

    Article  CAS  Google Scholar 

  28. APEX2, version 2009.7–0 (2007) Bruker AXS, Inc., Madison

  29. Sheldrick GM (2001) Bruker AXS Inc., Madison

  30. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  31. Sheldrick GM (2008) Acta Cryst 64:112–122

    Article  CAS  Google Scholar 

  32. Sheldrick GM (2015) Acta Cryst C71:3–8

    Google Scholar 

  33. Gu XL, Li JR, Jin B, Guo Y, Jing XB, Zhao PH (2021) New J Chem 45:17996–18007

    Article  CAS  Google Scholar 

  34. Ghosh S, Rahaman A, Orton G, Gregori G, Bernat M, Kulsume U, Hollingsworth N, Holt KB, Kabir SE, Hogarth G (2019) Eur J Inorg Chem 2019:4506–4515

    Article  CAS  Google Scholar 

  35. Mejia-Rodriguez R, Chong D, Reibenspies JH, Soriaga MP, Darensbourg MY (2004) J Am Chem Soc 126:12004–12014

    Article  CAS  PubMed  Google Scholar 

  36. Tatematsu R, Inomata T, Ozawa T, Masuda H (2016) Angew Chem Int Ed 55:5247–5250

    Article  CAS  Google Scholar 

  37. Li RX, Liu XF, Liu T, Yin YB, Zhou Y, Mei SK, Yan J (2017) Electrochim Acta 237:207–216

    Article  CAS  Google Scholar 

  38. Hemming EB, Chan B, Turner P, Corcilius L, Price JR, Gardiner MG, Masters AF, Maschmeyer T (2018) Appl Catal B Environ 223:234–241

    Article  CAS  Google Scholar 

  39. Zhao PH, Hu MY, Li JR, Wang YZ, Lu BP, Han HF, Liu XF (2020) Electrochim Acta 353:136615

    Article  CAS  Google Scholar 

  40. Zhao PH, Ma ZY, Hu MY, He J, Wang YZ, Jing XB, Chen HY, Li YL (2018) Organometallics 37:1280–1287

    Article  CAS  Google Scholar 

  41. Felton GAN, Mebi CA, Petro BJ, Vannucci AK, Evans DH, Glass RS, Lichtenberger DL (2009) J Organomet Chem 694:2681–2699

    Article  CAS  Google Scholar 

  42. Zhao PH, Li JR, Gu XL, Jing XB, Liu XF (2020) J Inorg Biochem 210:111126

    Article  CAS  PubMed  Google Scholar 

  43. Fourmond V, Jacques PA, Fontecave M, Artero V (2010) Inorg Chem 49:10338–10347

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Research Project Supported by Vanadium and Titanium Resources Comprehensive Utilization Key Laboratory of Sichuan Province (No. 2021FTSZ07), Fundamental Research Program of Shanxi Province (No. 20210302123042), and Research Project Supported by Shanxi Scholarship Council of China (No. 2021-119).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Long Li or Pei-Hua Zhao.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1411 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, MS., Guan, Y., Li, YL. et al. Azadithiolate-bridged [FeFe]-hydrogenase mimics with bridgehead N-derivation: structural and electrochemical investigations. Transit Met Chem 47, 257–263 (2022). https://doi.org/10.1007/s11243-022-00508-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-022-00508-5

Navigation