Skip to main content
Log in

Sandwich heterometallic coordination polymers consisting of copper-cluster pillars and layered networks of {Ln6} wheels: synthesis, structures, spectroscopic properties and Judd–Ofelt analysis

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two novel 3-D Ln(III)–Cu(I) heterometallic coordination polymers, [Ln2Cu2(L3)4(C2O4)2]·H2O (Ln = Sm, Eu; HL3 = 5-aminonicotinic acid), were hydrothermally produced by reacting lanthanide oxide and copper halide with 5-aminonicotinic acid and orotic acid. In the two isostructural complexes, {Ln6}-wheel clusters link each other via edge-sharing mode, constructing honeycomb-like layers which stack in –ABAB– mode. On the whole, the architectures can be described as sandwich framework constructed by {Ln6}-wheel layers pillared by interlamellar [CuOL32] triangle pillars. The electronic structure was theoretically calculated by the density functional theory, confirming the direct transition character. The steady and transient photoluminescent spectra were measured, from which the intensity parameters, radiative lifetime and quantum efficiency were calculated within the framework of the Judd–Ofelt theory. [Eu2Cu2(L3)4(C2O4)2]·H2O can be regarded as a potential candidate for LED applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheng J-W, Zhang J, Zheng S-T, Zhang M-B, Yang G-Y (2006) Angew Chem Int Ed 45(1):73–77

    Article  CAS  Google Scholar 

  2. Muller A, Krickemeyer E, Bogge H, Schmidtmann M, Beugholt C, Das SK, Peters F (1999) Chem-Eur J 5(5):1496–1502

    Article  CAS  Google Scholar 

  3. Xu J, Raymond KN (2000) Angew Chem Int Ed 39(15):2745–2747

    Article  CAS  Google Scholar 

  4. Murugesu M, Raftery J, Wernsdorfer W, Christou G, Brechin EK (2004) Inorg Chem 43(14):4203–4209

    Article  CAS  Google Scholar 

  5. Brechin EK, Cador O, Caneschi A, Cadiou C, Harris SG, Parsons S, Vonci M, Winpenny REP (2002) Chem Commun (17):1860–1861 

  6. McInnes EJ, Anson C, Powell AK, Thomson AJ, Poussereau S, Sessoli R (2001) Chem Commun (01):89–90 

  7. Dearden AL, Parsons S, Winpenny REP (2001) Angew Chem Int Ed 40(1):151–154

    Article  CAS  Google Scholar 

  8. Shi P-F, Zheng Y-Z, Zhao X-Q, Xiong G, Zhao B, Wan F-F, Cheng P (2012) Chem Eur J 18(47):15086–15091

    Article  CAS  Google Scholar 

  9. Cui Y, Yue Y, Qian G, Chen B (2012) Chem Rev 112(2):1126–1162

    Article  CAS  Google Scholar 

  10. Li L-L, Pan R, Zhao J-W, Yang B-F, Yang G-Y (2016) Dalton Trans 45(29):11628–11632

    Article  CAS  Google Scholar 

  11. Mandal A, Adhikary A, Sarkar A, Das D (2020) Inorg Chem 59(23):17758–17765

    Article  CAS  Google Scholar 

  12. Lysova AA, Samsonenko DG, Dorovatovskii PV, Lazarenko VA, Khrustalev VN, Kovalenko KA, Dybtsev DN, Fedin VP (2019) J Am Chem Soc 141(43):17260–17269

    Article  CAS  Google Scholar 

  13. Tasiopoulos AJ, Vinslava A, Wernsdorfer W, Abboud KA, Christou G (2004) Angew Chem Int Ed 43(16):2117–2121

    Article  CAS  Google Scholar 

  14. Leininger S, Olenyuk B, Stang PJ (2000) Chem Rev 100(3):853–908

    Article  CAS  Google Scholar 

  15. Sethi S, Jena S, Das PK, Behera N (2019) J Mol Struct 1193:495–521

    Article  CAS  Google Scholar 

  16. Bünzli J-CG (2015) Coord Chem Rev 293–294:19–47 

  17. Yang X, Jones RA, Huang S (2014) Coord Chem Rev 273–274:63–75

    Article  Google Scholar 

  18. Sakamoto M, Manseki K, Ōkawa H (2001) Coord Chem Rev 219–221:379–414

    Article  Google Scholar 

  19. Robin AY, Fromm KM (2006) Coord Chem Rev 250(15):2127–2157

    Article  CAS  Google Scholar 

  20. Zhou W-W, Zhao W, Wang F-W, Fang W-Y, Liu D-F, Wei Y-J, Xu M, Zhao X, Liang X (2015) RSC Adv 5(53):42616–42620

    Article  CAS  Google Scholar 

  21. Bergerhoff G, Berndt M, Brandenburg K (1996) Res Natl Inst Stand Technol 101:221–225

    Article  CAS  Google Scholar 

  22. Sheldrick GM (2015) Acta Cryst C 71:3–8

    Article  Google Scholar 

  23. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  24. Kresse G, Furthmüller J (1996) Phys Rev B 54(16):11169–11186

    Article  CAS  Google Scholar 

  25. Chakraborty D, Chowdhury A, Chandra M, Jana R, Shyamal S, Bhunia MK, Chandra D, Hara M, Pradhan D, Datta A, Bhaumik A (2021) Cryst Growth Des 21(5):2614–2623

    Article  CAS  Google Scholar 

  26. Wei W, Xie R-K, Du S-W, Tian C-B, Chai G-L (2021) J Alloys Compd 878:160353

    Article  CAS  Google Scholar 

  27. Setyawan W, Gaume RM, Lam S, Feigelson RS, Curtarolo S (2011) ACS Comb Sci 13(4):382–390

    Article  CAS  Google Scholar 

  28. Wang V, Xu N, Liu J-C, Tang G, Geng, W-T (2021) Comput Phys Commun 267:108033

    Article  CAS  Google Scholar 

  29. Cheng J-W, Zheng S-T, Yang G-Y (2007) Dalton Trans 4059–4066

  30. Wang G-L, Yang X-L, Liu Y, Li Y-Z, Du H-B, You X-Z (2008) Inorg Chem Commun 11:814–817

    Article  CAS  Google Scholar 

  31. Jiao C, Jiang X, Chu H, Jiang H, Sun L (2016) CrystEngComm 18:8683–8688

    Article  CAS  Google Scholar 

  32. Xu J, Su W (2011) Hong M CrystEngComm 13:3998–4004

    Article  CAS  Google Scholar 

  33. Ye J, Sun J, Zhang T, Guo Z (2020) Chem Phys Lett 758:137923

    Article  CAS  Google Scholar 

  34. Ferhi M, Bouzidi C, Horchani-Naifer K, Elhouichet H, Ferid M (2015) J Luminesc 157:21–27

    Article  CAS  Google Scholar 

  35. Kolesnikov IE, Povolotskiy AV, Mamonova DV, Kolesnikov EY, Kurochkin AV, Lähderanta E, Mikhailov MD (2018) J Rare Earth 36(5):474–481

    Article  CAS  Google Scholar 

  36. Sapianik AA, Dudko ER, Samsonenko DG, Lazarenko VA, Dorovatovskii PV, Fedin VP (2021) Inorg Chim Acta 517:120216

    Article  CAS  Google Scholar 

  37. Kiskin MA, Varaksina EA, Taydakov IV, Eremenko IL (2018) Inorg Chim Acta 482:85–89

    Article  CAS  Google Scholar 

  38. Kiraev SR, Nikolaevskii SA, Kiskin MA, Ananyev IV, Varaksina EA, Taydakov IV, Aleksandrov GG, Goloveshkin AS, Sidorov AA, Lyssenko KA, Eremenko IL (2018) Inorg Chim Acta 477:15–23

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support NSF of Anhui province (1708085QE91), from NSF of Education Department of Anhui Province (KJ2020A0647, 2020kfkc500, 2020kfkc502) and Program for Innovation Research Team in Huainan Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Jun Song or Wang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, WW., Xv, L., Zheng, QH. et al. Sandwich heterometallic coordination polymers consisting of copper-cluster pillars and layered networks of {Ln6} wheels: synthesis, structures, spectroscopic properties and Judd–Ofelt analysis. Transit Met Chem 46, 555–564 (2021). https://doi.org/10.1007/s11243-021-00473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00473-5

Navigation