Skip to main content
Log in

Synthesis, spectroscopic characterization, crystal structure and theoretical investigation of two azo-palladium (II) complexes derived from substituted (1-phenylazo)-2-naphtol

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The ortho-substituted (E)-1-((2-methoxyphenyl)diazenyl)naphthalen-2-ol and the meta-substituted (E)-1-((3-methoxyphenyl)diazenyl)naphthalen-2-ol were, respectively, used in the synthesis of two new complexes, bis[1-(2-methoxyphenylazo)-2-naphthoxy]palladium(II) and bis[1-(3-methoxyphenylazo)-2-naphthoxy]palladium(II), noted (I) and (II), respectively. (I) and (II) were characterized by physicochemical and spectroscopic methods, and their molecular structures were determined by X-ray crystallography. Both complexes display a square-planar geometry, which is reproduced by full geometry optimizations at the DFT/B3LYP level. Calculations were also performed on the free ligands (in their precursor form), as well as their para-substituted isomer (E)-1-((4-methoxyphenyl)diazenyl)naphthalen-2-ol and its hypothetical complex bis[1-(4-methoxyphenylazo)-2-naphthoxy]palladium(II) (compound (III). Calculations were also performed on the free p-phenylazo-2-naphthol ligand (p-MoxyPhNap), in order to understand their bonding and to analyze their electronic structure. TD-DFT calculations were also performed on the three complexes to simulate their absorption spectra from and compare to the experimental UV–Vis data of (I) and (II). The main peaks in the spectrum of (I) are assigned to mixed LMCT/LLCT and ππ * (ILCT) transition, while the unique major peak afforded by (II) is assigned to MLCT and LLCT transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dharmalingam V, Ramasamy AK, Balasuramanian V (2011) Synthesis and EPR studies of copper metal complexes of dyes derived from remazol red B, procino yellow, fast green FCF, brilliant cresyl blue with copper acetate monohydrate. E-J Chem 8:S211–S224

    Article  CAS  Google Scholar 

  2. Khedr AM, Gaber M, Abd El-Zaher EH (2011) Synthesis, structural characterization, and antimicrobial activities of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of triazole-based azodyes. Chin J Chem 29:1124

    Article  CAS  Google Scholar 

  3. Kirkan B, Gup R (2008) Synthesis of new Azo dyes and copper(II) complexes derived from Barbituric acid and 4-Aminobenzoyl hydrazone. Turk J Chem 32:9–17

    CAS  Google Scholar 

  4. Sekar N (1999) Ecofriendly metal complex dyes an update. Colourage 46:63–65

    CAS  Google Scholar 

  5. Thomas AM, Nethaji M, Chakravarty ARJ (2004) Different modes of DNA cleavage activity of dihydroxo-bridged dicopper (II) complexes having phenanthroline bases. Inorg Biochem 98:1087–1097

    Article  CAS  Google Scholar 

  6. Reed JE, Arnal AA, Neidle S, Vilar R (2006) Stabilization of G-quadruplex DNA and inhibition of telomerase activity by square-planar nickel (II) complexes. J Am ChemSoc 128:5992–5993

    Article  CAS  Google Scholar 

  7. Selvakumar B, Rajendiran V, Uma Maheswari P, Stoeckli-Evans H, Palaniandavar M (2006) Structures, spectra, and DNA-binding properties of mixed ligand copper(II) complexes of iminodiacetic acid: the novel role of diimine co-ligands on DNA conformation and hydrolytic and oxidative double strand DNA cleavage. J Inorg Biochem 100:316–330

    Article  CAS  PubMed  Google Scholar 

  8. Patra AK, Nethaji M, Chakravarty AR (2007) J Synthesis, crystal structure, DNA binding and photo-induced DNA cleavage activity of (S-methyl-L-cysteine)copper(II) complexes of heterocyclic bases. Inorg Biochem 101:233–244

    Article  CAS  Google Scholar 

  9. Chen GJ, Qiao X, Qiao PQ, Xu GJ, Xu JY, Tian JL, Gu W, Liu X, Yan SP (2010) Synthesis, DNA binding, photo-induced DNA cleavage, cytotoxicity and apoptosis studies of copper(II) complexes. J Inorg Biochem 105:119–126

    Article  PubMed  CAS  Google Scholar 

  10. Cvek B, Milacic V, Taraba J, Dou QP (2008) Ni (II), Cu (II), and Zn (II) diethyldithiocarbamate complexes show various activities against the proteasome in breast cancer cells. J Med Chem 51:6256–6258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abe T, Mano S, Yamaya Y, Tomotake A (1999) Thermal dye transfer printing with chelate compounds. J Imag Sci Tech 43:339–344

    CAS  Google Scholar 

  12. Meyers GA, Michaels FM, Reeves RL, Trotter P (1985) Kinetics and mechanism of chelation of nickel(II) by a tridentate alpha.-[(2-hydroxyphenyl)azo]-alpha.-acetoacetonitrile and an alpha.-(8-quinolylazo)-.alpha.-acetoacetonitrile dye. J InorgChem 24:731–738

    CAS  Google Scholar 

  13. Graves HM, Johnston LG, Reiser A (1988) The effect of metallization on singlet oxygen formation by azo dyes. J PhotochemPhotobiolA 43:183–192

    CAS  Google Scholar 

  14. Liu JC-I, Bailar JC Jr (1998) The structures and properties of lakes of some azo dyes. InorgChimActa 145:181–184

    Google Scholar 

  15. Woodward C, Freiser H (1973) Sulphonated azo-dyes as extractive metallochromic reagents. Talanta 20:417–420

    Article  CAS  PubMed  Google Scholar 

  16. Shibata S, Furukawa M, Toei K (1973) Syntheses and spectrophotometric studies of azo dyes containing m-dimethylaminophenol as analytical reagents. Anal ChimActa 66:397–409

    Article  CAS  Google Scholar 

  17. Pilipenko AT, Savransky LI (1987) Selectivity and sensitivity of metal determination by co-ordination compounds. Talanta 34:77–86

    Article  CAS  PubMed  Google Scholar 

  18. Szurdoki F, Ren D, Walt DR (2000) A combinatorial approach to discover new chelators for optical metal ion sensing. Anal Chem 72:5250–5257

    Article  CAS  PubMed  Google Scholar 

  19. Wang S, Shen S, Xu H (2000) Synthesis, spectroscopic and thermal properties of a series of azo metal chelate dyes. Dyes Pigments 44:195–198

    Article  CAS  Google Scholar 

  20. Park HY, Lee NH, Je JT, Min KS, Huh YJ, Kim E-R (2001) Synthesis and Characterization of X-azo Dyes (X=Ni, Cu, Zn) for Digital Versatile Disc-Recordable (DVD-R). MolCrystLiqCryst 371:305–308

    CAS  Google Scholar 

  21. Park H, Kim E-R, Kim DJ, Lee H (2002) Synthesis of metal-azo dyes and their optical and thermal properties as recording materials for DVD-R. Bull ChemSocJpn 75:2067–2070

    CAS  Google Scholar 

  22. Pratihar JL, Mandal P, Lin CH, Lai CK, Mal D (2017) Azo-amide palladium(II) complexes: synthesis, characterization and application in C-C cross-coupling reactions. Polyhedron. https://doi.org/10.1016/j.poly.2017.06.055

    Article  Google Scholar 

  23. Munusamy S, Muniyappan P, Galmari V (2019) Synthesis and structural characterization of palladium(II) 2-(arylazo)naphtholate complexes and their catalytic activity in Suzuki and Sonogashira coupling reactions. J CoordChem 72:1910–1921

    CAS  Google Scholar 

  24. Jana S, Chandan RN, Manna K, Mondal TK (2020) Synthesis, characterization, X-ray structure and DNA binding study of palladium(II) complex with new thioether containing ONS donor ligand. J ChemSci 132:64–72

    CAS  Google Scholar 

  25. Pratihar P, Mondal TK, Patra AK, Sinha C (2009) trans-Dichloro-bis-(arylazoimidazole)palladium(II) azo-N to make free azo (-NdN-) function is important to reveal photochromic activity. Inorg Chem 48:2760–2769

    Article  CAS  PubMed  Google Scholar 

  26. Sen C, Roy S, Mondal TK, Ghosh R, Mondal JA, Palit DK, Sinha C (2015) Palladium(II)-iodo-{1-alkyl-2-(arylazo)imidazole} complexes: Synthesis, structure, dynamics of photochromism and DFT computation. Polyhedron 85:900–911

    Article  CAS  Google Scholar 

  27. Salmen R, Malterud KE, Pedersen BF (1988) Acta Chem. Scand A 42:493

    Article  Google Scholar 

  28. Gilli P, Bertolasi V, Pretto L, Antonov L, Gilli G (2005) J Am Chem Soc 127:4943

    Article  CAS  PubMed  Google Scholar 

  29. Sheldrick GM (2008) A shrt history of SHELX. Acta Cryst A64:112–122

    Article  CAS  Google Scholar 

  30. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C71:3–8

    Google Scholar 

  31. Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Cryst 45:849–854

    Article  CAS  Google Scholar 

  32. ADF2016.01 (2016) Version Theoretical Chemistry Vrije Universiteit Amsterdam, The Netherlands, SCM

  33. Baerends EJ, Ellis DE, Ros P (1973) Self-consistent molecular Hartree-Fock-Slater calculations I. Comput Proc Chem Phys 2:41

    CAS  Google Scholar 

  34. teVelde G, Baerends EJ (1992) Numerical integration for polyatomic systems. J Comput Phys 99:84

    Article  CAS  Google Scholar 

  35. Fonseca Guerra C, Snijders JG, teVelde G, Baerends EJ (1998) Towards an order-N DFT method. The ChimAcc 99:391

    Google Scholar 

  36. Bickelhaupt FM, Baerends EJ (2000) Kohn-Sham density functional theory: predicting and understanding chemistry. Rev ComputChem 15:1

    CAS  Google Scholar 

  37. teVelde G, Bickelhaupt FM, Fonseca Guerra C, van Gisbergen SJA, Baerends EJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J ComputChem 22:931

    CAS  Google Scholar 

  38. Becke AD (1993) Density functional thermochemistry.III. The role of exact exchange. J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  39. Lee C, Yang W, Parr RG (1998) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  Google Scholar 

  40. vanLenthe E, Baerends EJ, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99:4597–4610

    Article  CAS  Google Scholar 

  41. vanLenthe E, Baerends EJ, Snijders JG (1994) Relativistic total energy using regular approximations. J Chem Phys 101:9783–9792

    Article  CAS  Google Scholar 

  42. vanLenthe E, Baerends EJ, Snijders JG (1999) Geometry optimizations in the zero order regular approximation for relativistic effects. J Chem Phys 110:8943–8953

    Article  CAS  Google Scholar 

  43. Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on main group molecules. J Chem Phys 96:9005

    Article  CAS  Google Scholar 

  44. Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on transition-metal carbonyls. J Chem Phys 96:6937

    Article  CAS  Google Scholar 

  45. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  46. Klamt A, Schüümann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J ChemSoc Perkin Trans 2:799–805

    Article  Google Scholar 

  47. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor–acceptor perspective. Cambridge University Press, Cambridge

    Google Scholar 

  48. Weinhold F, Glendening ED (2001) NBO 5.0 program manual: natural bond orbital analysis programs. University of Wisconsin, Madison, Theoretical Chemistry Institute and Department of Chemistry

    Google Scholar 

  49. Chetioui S, Rouag DA, Djukic JP, Bochet CG, Touzani R, Bailly C, Crochet A, Fromm KM (2016) Crystal structures of a copper(II) and the isotypic nickel(II) and palladium(II) complexes of the ligand (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-ol. Acta Cryst E 72:1093

    Article  CAS  Google Scholar 

  50. Lin ML, Tsai CY, Li CY, Huang BH, Ko BT (2010) Bis{1-[(E)-(2-methyl-phen-yl)diazen-yl]-2-naphtho-lato}palladium(II). Acta Cryst E 66:m1022

    Article  CAS  Google Scholar 

  51. MerzougM ZB (2014) Coordination diversity of the phenazine ligand in binuclear transition metal sandwich complexes: theoretical investigation. J Organomet Chem 770:69–78

    Article  CAS  Google Scholar 

  52. KorichiH ZouchouneF, ZendaouiSM ZouchouneB, Saillard JY (2010) The coordination chemistry of azulene: a comprehensive DFT investigation. Organometallics 29:1693–1706

    Article  CAS  Google Scholar 

  53. ZendaouiSM ZouchouneB (2013) Molecular properties and electronic structure of phenazine ligand in binuclear molybdenum and manganese metal complexes: a density functional theory study. Polyhedron 51:123–131

    Article  CAS  Google Scholar 

  54. Bouchakri N, Benmachiche A, Zouchoune B (2011) Bonding analysis and electronic structure of transition metalbenzoquinoline complexes: a theoretical study. Polyhedron 30:2644–2653

    Article  CAS  Google Scholar 

  55. ZouchouneB MerzougM (2019) BensalemN. Struct Chem. https://doi.org/10.1007/s11224-019-01322-z

    Article  Google Scholar 

  56. Ababsa S, Farah S, Zouchoune B, Benhamada N (2010) Theoretical investigation of the coordination of dibenzazepine to transition-metal complexes. Polyhedron 29:2722–2730

    Article  CAS  Google Scholar 

  57. Mkpenie VN, Essien EE (2015) Solvent and methyl group effects on the electronic spectral properties of azo-2-naphtol dye. Am ChemSci J 8:1–8

    Article  CAS  Google Scholar 

  58. Zouchoune B, Mansouri L (2019) Electronic structure and UV–Vis spectra simulation of square planar Bis (1-(4-methylphenylazo)-2-naphtol)-Transition metal complexes [M(L)2]x (M= Ni, Pd, Pt, Cu, Ag, and x = − 1, 0, + 1): DFT and TD-DFT study. StructChem 30:691–701

    CAS  Google Scholar 

  59. Mansouri L, Zouchoune B (2015) Substitution effects and electronic properties of the azo dye (1-phenylazo-2-naphthol) species: a TD-DFT electronic spectra investigation. Can J Chem 93:509–517

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the Algerian MESRS (Ministère de l’Enseignement Supérieur et de la RechercheScientifique) and DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contribution of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Bachir Zouchoune.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

This paper is dedicated to Dr. Jean-René Hamon at the occasion of his 65th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1022 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetioui, S., Zouchoune, B., Merazig, H. et al. Synthesis, spectroscopic characterization, crystal structure and theoretical investigation of two azo-palladium (II) complexes derived from substituted (1-phenylazo)-2-naphtol. Transit Met Chem 46, 91–101 (2021). https://doi.org/10.1007/s11243-020-00425-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00425-5

Navigation