Skip to main content
Log in

Preparation of TiO2/CNTs nanocomposite and its catalytic performance on the thermal decomposition of ammonium perchlorate

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Composite particles of carbon nanotubes (CNTs) and titanium dioxide (TiO2) were prepared by a sol-flux method. Characterization of TiO2/CNTs nanocomposite was performed by X-ray powder diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The results show that TiO2 nanocrystals (mixed anatase and rutile) are successfully deposited on the surface of CNTs, forming a granular coating with a thickness of about 2 nm. It is possible that the growth of TiO2 on the surface of CNTs is implemented by anchoring TiO2 through hydroxyl and carboxylic functional groups. In the presence of TiO2/CNTs nanocomposite, the peak temperature of the high-temperature decomposition of ammonium perchlorate (AP) decreased by 52.5 °C, better than other samples including the one of simply mixed TiO2 and CNTs. The catalytic influence is evident even with 1% catalyst concentration. The thermal kinetic constant for the catalytic decomposition of AP is computed using model free (isoconversional) Flynn–Wall–Ozawa approach. It shows that although the two exothermic decomposition peaks merged into one, the low-temperature decomposition stage still exists, and accounts for about thirty percent of the whole reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5 
Fig. 6 

Similar content being viewed by others

References

  1. Chaturvedi S, Dave PN (2013) A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J Saudi Chem Soc 17(2):135–149

    Article  CAS  Google Scholar 

  2. Boldyrev V (2006) Thermal decomposition of ammonium perchlorate. Thermochim Acta 443(1):1–36

    Article  CAS  Google Scholar 

  3. Kishore K, Sunitha M (1978) Mechanism of catalytic activity of transition metal oxides on solid propellant burning rate. Combust Flame 33:311–314

    Article  CAS  Google Scholar 

  4. Chatragadda K, Vargeese AA (2017) Synergistically catalysed pyrolysis of hydroxyl terminated polybutadiene binder in composite propellants and burn rate enhancement by free-standing CuO nanoparticles. Combust Flame 182:28–35

    Article  CAS  Google Scholar 

  5. Fujimura K, Miyake A (2010) The effect of specific surface area of TiO2 on the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim 99(1):27–31

    Article  CAS  Google Scholar 

  6. Vargeese AA, Muralidharan K (2013) Effect of anatase–brookite mixed phase titanium dioxide nanoparticles on the high temperature decomposition kinetics of ammonium perchlorate. Mater Chem Phys 139(2–3):537–542

    Article  CAS  Google Scholar 

  7. Reid DL, Russo AE, Carro RV, Stephens MA, LePage AR, Spalding TC, Petersen EL, Seal S (2007) Nanoscale additives tailor energetic materials. Nano Lett 7(7):2157–2161

    Article  CAS  Google Scholar 

  8. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56

    Article  CAS  Google Scholar 

  9. Ren Y, Wu X, Li M (2016) Highly stable SiOx/multiwall carbon nanotube/N-doped carbon composite as anodes for lithium-ion batteries. Electrochim Acta 206:328–336

    Article  CAS  Google Scholar 

  10. Liang X-L, Dong X, Lin G-D, Zhang H-B (2009) Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO2 to methanol. Appl Catal B 88(3–4):315–322

    Article  CAS  Google Scholar 

  11. Li W, Wang X, Chen Z, Waje M, Yan Y (2006) Pt− Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells. J Phys Chem B 110(31):15353–15358

    Article  CAS  PubMed  Google Scholar 

  12. Qu J, Cloud JE, Yang Y, Ding J, Yuan N (2014) Synthesis of nanoparticles-deposited double-walled TiO2-B nanotubes with enhanced performance for lithium-ion batteries. ACS Appl Mater Interfaces 6(24):22199–22208

    Article  CAS  PubMed  Google Scholar 

  13. Zhou W, Pan K, Qu Y, Sun F, Tian C, Ren Z, Tian G, Fu H (2010) Photodegradation of organic contamination in wastewaters by bonding TiO2/single-walled carbon nanotube composites with enhanced photocatalytic activity. Chemosphere 81(5):555–561

    Article  CAS  PubMed  Google Scholar 

  14. Yingliang HLWHL, Zibei JZS (2010) TiO2/Carbon nanotube composites and their synergistic effects on enhancing the photocatalysis efficiency. Progress Chem 5:012

    Google Scholar 

  15. Yoldas BE (1986) Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. J Mater Sci 21(3):1087–1092

    Article  CAS  Google Scholar 

  16. Zhou O, Fleming R, Murphy D, Chen C, Haddon R, Ramirez A, Glarum S (1994) Defects in carbon nanostructures. Science 263(5154):1744–1747

    Article  CAS  PubMed  Google Scholar 

  17. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6):833–840

    Article  CAS  Google Scholar 

  18. Slink WE, DeGroot PB (1981) Vanadium-titanium oxide catalysts for oxidation of butene to acetic acid. J Catal 68(2):423–432

    Article  Google Scholar 

  19. Song Z, Hrbek J, Osgood R (2005) Formation of TiO2 nanoparticles by reactive-layer-assisted deposition and characterization by XPS and STM. Nano Lett 5(7):1327–1332

    Article  CAS  PubMed  Google Scholar 

  20. Vyazovkin S, Wight CA (1999) Kinetics of thermal decomposition of cubic ammonium perchlorate. Chem Mater 11(11):3386–3393

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has received support from the National Natural Science Foundation of China (50842054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Hao Meng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, SH., Liu, JF., Kong, XT. et al. Preparation of TiO2/CNTs nanocomposite and its catalytic performance on the thermal decomposition of ammonium perchlorate. Transit Met Chem 45, 545–551 (2020). https://doi.org/10.1007/s11243-020-00406-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00406-8

Keywords

Navigation