Skip to main content
Log in

NNN pincer and NN bidentate(pyrazolylpyridyl) Rh(I) complexes as catalyst precursors for hydroformylation of olefins

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The industrial process of hydroformylation or the oxo process has been used for many years in the production of aldehydes from alkenes. Different metals have been used as efficient catalysts for hydroformylation, in which linear and branched aldehydes are the products obtained; therefore, the development of new catalysts for hydroformylation with high selectivity to aldehydes is important. Rhodium complexes 69 were synthesized using [RhCl(CO)2]2, or [RhCl(COD)]2, with either pyrazolylpyridyl NNN pincer ligands or a pyrazolylpyridyl NN ligand. These complexes were then evaluated as catalyst precursors in the hydroformylation reaction using a variety of alkenes. The catalysts all showed activity in hydroformylation but the most active catalyst was methyl-substituted pyrazolyl–rhodium complex 7 following optimization of temperature, syngas pressure and amount of catalyst. Other olefinic substrates were used for hydroformylation in the presence of 7 under the optimum hydroformylation conditions. Undecene and dodecene as substrates only showed minimal formation of aldehydes with predominantly isomerization of the alkene being observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. Maximilian A, Hertrich F, Scharnagl FK, Pews-Davtyan A, Kreyenschulte C, Lund H, Bartling S, Jackstell R, Beller M (2019) Chem A Eur J. https://doi.org/10.1002/chem.201806282

    Article  Google Scholar 

  2. Jan JMB, Oliver T, Paciello R, Thomas S, Hofmann P (2016) ACS Catal 6:2802–2810

    Article  Google Scholar 

  3. Tan R, Zheng X, Qu B, Sader CA, Fandrick KR, Senanayake CH, Zhang X (2016) Org Lett 18:10–13

    Google Scholar 

  4. Wang X (2015) J Flow Chem 5:125–132

    Article  CAS  Google Scholar 

  5. Whiteker GT, Cobley CJ (2012) Top Organomet Chem 42:35–46

    Article  CAS  Google Scholar 

  6. Pospech J, Fleischer I, Franke R, Buchholz S, Beller M (2013) Angew Rev 52:2852–2872

    Article  CAS  Google Scholar 

  7. Le L, Couturier J, Dubois J (2016) J Mol Catal A 417:116–121

    Article  Google Scholar 

  8. Sun Q, Dai Z, Liu X, Sheng N, Deng F, Meng X, Xiao F, Sun Q, Dai Z, Liu X, Sheng N, Deng F, Meng X (2015) J Am Chem Soc. https://doi.org/10.1021/jacs.5b02122

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brezny AC, Landis CR (2018) Acc Chem Res 51:2344–2354

    Article  CAS  Google Scholar 

  10. Matsui Y, Orchin M (1983) J Organomet Chem 246:57

    Article  CAS  Google Scholar 

  11. Naim M, Alam O, Nawaz F, Alam MJ, Alam P (2015) J Pharm Bioallied Sci 8:2–17

    Google Scholar 

  12. Lamsayah M, Khoutoul M, Takfaoui A, Abrigach F, Oussaid A, Touzani R (2015) Sep Sci Technol 50:2170–2176

    CAS  Google Scholar 

  13. Ruman T, Lukasiewicz M, Ciunik Z, Wolowiec S (2001) Polyhedron 20:2551–2558

    Article  CAS  Google Scholar 

  14. Teuma E, Loy M, Le Berre C, Etienne M, Daran J, Kalck P (2003) Organometallics 22:5261–5267

    Article  CAS  Google Scholar 

  15. Oro LA, Pinillos T, Uson R (1982) J Mol Catal 14:375–378

    Article  Google Scholar 

  16. Lyubimov SE, Rastorguev EA, Davankov VA (2012) Russ Chem Bull 61:2356–2359

    Article  CAS  Google Scholar 

  17. Ren X, Zheng Z, Zhang L, Wang Z, Xia C, Ding K (2016) Angew Chem Int Ed Engl 55:1–5

    Article  Google Scholar 

  18. Touzani R (2014) Arab J Chem Environ Res 1:76–99

    Google Scholar 

  19. Gramage-doria R, Raoufmoghaddam S, Parella T (2015) J Am Chem Soc 137:2680–2687

    Article  Google Scholar 

  20. Segapelo TV, Guzei IA, Spencer LC, Van Zyl WE, Darkwa J (2009) Inorg Chim Acta 362:3314–3324

    Article  CAS  Google Scholar 

  21. Kapfunde T (2018) University of Johannesburg

  22. RajanBabu TV, Ayers TA (1994) Tetrahedron Lett 35:4295–4298

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Research Foundation of South Africa (NRF) (Grant Nos. 105557, 117989), The Technology and Human Resource for Industry Programme (THRIP), (Grant No. THRIP/58/30/11/2017), Sasol SA Ltd (University Collaboration Programme) and the University of Johannesburg’s Centre for Synthesis and Catalysis for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banothile C. E. Makhubela.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamede, N.V., Kapfunde, T.A., Ocansey, E. et al. NNN pincer and NN bidentate(pyrazolylpyridyl) Rh(I) complexes as catalyst precursors for hydroformylation of olefins. Transit Met Chem 45, 1–8 (2020). https://doi.org/10.1007/s11243-019-00350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00350-2

Navigation