Skip to main content
Log in

Mixed thioalkyl-azoimine (SNN′)/α-diimine–ruthenium complexes: synthesis, characterization, DFT calculations, crystal structure and application as pre-catalysts for hydrogenation of acetophenone

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Eight ruthenium complexes having thioalkyl-azoimine (SNN) ligands of two general types have been synthesized: (a) [Ru(L)(bipy)Cl](PF6) where {bipy = bipyridine, L = (2-SR)C6H4N=NC(COCH3)=NC6H4X, R = Ph (X = H, L1, 1; X = CH3, L2, 2; X = F, L3, 3); R = Me, (X = H, L4, 4)} and (b) [Ru(L1)(N–N)Cl](PF6) {N–N = 4,4-dimethyl-2,2′-bipyridine (dmbipy) (5), (1,10-phenanthroline) phen (6), 3,4,7,8-tetramethyl-1,10-phenanthroline (tetrmphen) (7), 5-5-chloro-1,10-phenanthroline (Clphen) (8). The crystal structures for 1 and 6 as well as for L2 are reported; the crystal structures of 1 and 6 show that L1 is bound to the ruthenium center as κ3[S,N,N′]. The complexes have been characterized by IR, UV/Vis and NMR spectroscopy as well as electrochemical (CV) techniques. The effect of groups X, the substituent R and N–N bidentate ligands on the electronic properties of the resulting mononuclear ruthenium complexes was investigated. The catalytic activity of these complexes was tested in the liquid-phase hydrogenation of acetophenone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Egdal RK, Hazell A, Larsen FB, Mckenzie CJ, Scarrow RC (2003) J Am Chem Soc 125:32

    Article  CAS  PubMed  Google Scholar 

  2. Sellmann D, Lauderbach F, Geipel F, Heinemann FW, Moll M (2004) Angew Chem 116:3203

    Article  Google Scholar 

  3. Kruger HJ, Peng G, Holm RH (1991) Inorg Chem 30:734

    Article  CAS  Google Scholar 

  4. Koley AP, Purohit S, Prasad LS, Ghosh S, Manoharan PT (1992) Inorg Chem 31:305

    Article  CAS  Google Scholar 

  5. Koley AP, Nirmala R, Prasad LS, Ghosh S, Manoharan PT (1992) Inorg Chem 31:1764

    Article  CAS  Google Scholar 

  6. Raja M, Gowri N, Ramesh R (2010) Polyhedron 29:1175

    Article  CAS  Google Scholar 

  7. Hossain M, Chattopadhyay SK, Ghosh S (1997) Polyhedron 16:4313

    Article  CAS  Google Scholar 

  8. Basuli F, Peng SM, Bhattacharya S (1997) Inorg Chem 36:5645

    Article  CAS  Google Scholar 

  9. Jana M, Pramanik A, Kundu S, Sarkar D, Jana S, Mondal TK (2013) Inorg Chim Acta 394:583

    Article  CAS  Google Scholar 

  10. Jana M, Pramanik A, Sarkar D, Biswas S, Mondal TK (2013) J Mol Struct 1047:73

    Article  CAS  Google Scholar 

  11. Sarkar SK, Jana MS, Mondal TK, Sinha C (2014) Appl Organometal Chem 28:641

    Article  CAS  Google Scholar 

  12. Al-Noaimi M, Crutchley RJ, AlDamen M, Rawashdeh A, Khanfar MA, Seppelt K (2011) Polyhedron 30:2075

    Article  CAS  Google Scholar 

  13. Al-Noaimi M, El-khateeb M, Haddad S, Saadeh H (2010) Transit Met Chem 35:877

    Article  CAS  Google Scholar 

  14. Gennett T, Milner DF, Weaver MJ (1985) J Phys Chem 89:2787

    Article  CAS  Google Scholar 

  15. Agilent (2011) CrysAlis PRO. Agilent Technologies, Yarnton

    Google Scholar 

  16. SHELXTL (2002) (XCIF, XL, XP, XPREP, XS), version 6.10. Bruker AXS Inc., Madison, WI

  17. Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., Wallingford

  18. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  19. Wadt WR, Hay PJ (1985) J Chem Phys 82:284

    Article  CAS  Google Scholar 

  20. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theoret Chim Acta 77:23

    Article  Google Scholar 

  21. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454

    Article  CAS  Google Scholar 

  22. Casida MK, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439

    Article  CAS  Google Scholar 

  23. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218

    Article  CAS  Google Scholar 

  24. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669

    Article  CAS  PubMed  Google Scholar 

  25. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839

    Article  CAS  PubMed  Google Scholar 

  26. Dinda J, Bag K, Sinha C, Mostafa G, Lu T (2003) Polyhedron 22:1367

    Article  CAS  Google Scholar 

  27. Al-Noaimi M, Abdel-Jalil R, Haddad S, Al-Far R, Sunjuk M, Crutchley RJ (2006) Inorg Chim Acta 359:2395

    Article  CAS  Google Scholar 

  28. Weiss T, Böhme U, Walfort B, Rheinwald G, Lang H (2005) Organometallics 24:2577

    Article  CAS  Google Scholar 

  29. Akita M, Takahashi Y, Hikichi S, Moro-oka Y (2001) Inorg Chem 40:169

    Article  CAS  PubMed  Google Scholar 

  30. Al-Noaimi M, Hammoudeh A, Awwadi F, Bader R, Mahmoud A (2018) Inorg Chim Acta 471:186

    Article  CAS  Google Scholar 

  31. Li K, Niu J, Yang M, Li Z, Wu L, Hao X, Song M (2015) Organometallics 34(7):1170

    Article  CAS  Google Scholar 

  32. Abdur-Rashid K, Clapham S, Hadzovic A, Harvey J, Lough A, Morris R (2002) J Am Chem Soc 124:15104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the Scientific Research Support Fund (Bas/2/3/2014) and Hashemite University, Jordan, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Al-Noaimi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Noaimi, M., Awwadi, F.F., Hammoudeh, A. et al. Mixed thioalkyl-azoimine (SNN′)/α-diimine–ruthenium complexes: synthesis, characterization, DFT calculations, crystal structure and application as pre-catalysts for hydrogenation of acetophenone. Transit Met Chem 44, 355–367 (2019). https://doi.org/10.1007/s11243-018-00302-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-00302-2

Navigation