Skip to main content

Advertisement

Log in

Bidentate iron complexes based on hyperbranched salicylaldimine ligands and their catalytic behavior toward ethylene oligomerization

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A series of bidentate iron complexes based on hyperbranched salicylaldimine ligands were synthesized and characterized by spectroscopic and analytical methods. Upon activation with methylaluminoxane (MAO), the complexes showed good activities [up to 8.17 × 104 g/(mol Fe h)] for ethylene oligomerization. Activation of the bidentate iron complex with a 1-octadecyl moiety in the ligand backbone (complex C3) with Et2AlCl produced higher catalytic activity than C3 with MAO, although the selectivity for C8+ oligomers was lower. The choice of solvent and reaction parameters significantly affected both the activities and selectivities of these complexes. Under the conditions ([Fe] = 5 μmol; temperature = 25 °C; toluene = 50 mL; time = 30 min; ethylene pressure = 0.5 MPa; MAO as cocatalyst), complex C3 gave high activity [7.46 × 104 g/(mol Fe h)] with better selectivity for C8+ oligomers (26.58%). The catalytic activities and selectivities were also influenced by the ligand structure and choice of metal. The catalytic activities declined with increasing alkyl chain length of the ligand backbone. Compared to the nickel complex with 1-tetradecyl as core in the ligand backbone (C4), the iron complexes exhibited lower catalytic activities but the better selectivities for C10+ oligomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Skupinska J (1991) Chem Rev 91:613–648

    Article  CAS  Google Scholar 

  2. Ziegler K, Gellert HG (1950) Liebigs Ann Chem 567:195–203

    Article  CAS  Google Scholar 

  3. Ziegler K, Holzkamp E, Martin H, Breil H (1955) Angew Chem 67:541–547

    Article  CAS  Google Scholar 

  4. Small BL, Brookhart M, Bennett AMA (1998) J Am Chem Soc 120:4049–4050

    Article  CAS  Google Scholar 

  5. Small BL, Brookhart M (1998) J Am Chem Soc 120:7143–7144

    Article  CAS  Google Scholar 

  6. Britovsek GJP, Gibson VC, Kimberley BS, Maddox PJ, McTavish SJ, Solan GA, White AJP, Williams DJ (1998) Chem Commun 7:849–850

    Article  Google Scholar 

  7. Gibson VC, Redshaw C, Solan GA (2007) Chem Rev 107:1745–1776

    Article  CAS  Google Scholar 

  8. Fernández I, Trovitch RJ, Lobkovsky E, Chirik PJ (2008) Organometallics 27:109–118

    Article  Google Scholar 

  9. Alt HG, Licht EH, Licht AI, Schneider KJ (2006) Coord Chem Rev 250:2–17

    Article  CAS  Google Scholar 

  10. Simon LC, Mauler RS, De Souza RF (1999) J Polym Sci A: Polym Chem 37:4633–4656

    Article  Google Scholar 

  11. Bianchini C, Giambastiani G, Luconi L, Meli A (2010) Coord Chem Rev 254:431–455

    Article  CAS  Google Scholar 

  12. Xiao LW, Gao R, Zhang M, Li Y, Cao XP, Sun WH (2009) Organometallics 28:2225–2233

    Article  CAS  Google Scholar 

  13. Sun WH, Hao P, Li G, Zhang S, Wang WQ, Yi JJ, Asma M, Tang N (2007) J Organomet Chem 692:4506–4518

    Article  CAS  Google Scholar 

  14. Xiao TPF, Zhang S, Kehr G, Hao X, Erker G, Sun WH (2011) Organometallics 30:3658–3665

    Article  CAS  Google Scholar 

  15. Malgas-Enus R, Mapolie SF (2014) Inorg Chim Acta 409:96–105

    Article  CAS  Google Scholar 

  16. Eaves R, Parkin S, Ladipo FT (2007) Inorg Chem 46:9495–9502

    Article  CAS  Google Scholar 

  17. Wang J, Zhang P, Chen S, Li CQ, Li HY, Yang G (2013) J Macro Sci Part A 50:163–167

    Article  Google Scholar 

  18. Wang J, Yang G, Li CQ, Shi WG (2014) Chem J Chin Univ 35:1536–1540

    CAS  Google Scholar 

  19. O’Reilly RK, Gibson VC, White AJP, Williams DJ (2003) J Am Chem Soc 125:8450–8451

    Article  Google Scholar 

  20. Zhang N, Wang SH, Song L, Li CQ, Wang J (2016) Inorg Chim Acta 453:369–375

    Article  CAS  Google Scholar 

  21. Shriver DF (1986) The manipulation of air-sensitive compounds. McGraw-Hill, New York

    Google Scholar 

  22. Wang J, Li CQ, Zhang SY, Sun F, Ge TJ (2008) Chin Chem Lett 19:43–46

    Article  CAS  Google Scholar 

  23. Li CQ, Yu HY, Lin ZY, Wang FF, Zhang N, Wang J (2017) J Coord Chem. doi:10.1080/00958972.2017.1293822

    Google Scholar 

  24. Tas E, Kilic A, Konak N, Yilmaz I (2008) Polyhedron 27:1024–1032

    Article  CAS  Google Scholar 

  25. Chen EY, Marks TJ (2000) Chem Rev 100:1391–1434

    Article  CAS  Google Scholar 

  26. Chandran D, Kwak CH, Oh JM, Ahn IY, Ha CS, Kim I (2008) Catal Lett 125:27–34

    Article  CAS  Google Scholar 

  27. Doherty MD, Trudeau S, White PS, Morken JP, Brookhart M (2007) Organometallics 26:1261–1269

    Article  CAS  Google Scholar 

  28. Abbo HS, Titinchi SJ (2013) Molecules 18:4728–4738

    Article  CAS  Google Scholar 

  29. Killian CM, Johnson LK, Brookhart M (1997) Organometallics 16:2005–2007

    Article  CAS  Google Scholar 

  30. Shao CX, Sun WH, Li ZL, Hu YL, Han LQ (2002) Catal Commun 3:405–410

    Article  CAS  Google Scholar 

  31. Laine TV, Lappalainen K, Liimatta J, Aitola E, Löfgren B, Leskelä M (1999) Macromol Rapid Commun 20:487–491

    Article  CAS  Google Scholar 

  32. Jolly PW (1982) In: Wilkinson G, Stone FGA, Abel EW (eds) Comprehensive organometallic chemistry, vol 8. Pergamon Press, Oxford, p 615

    Chapter  Google Scholar 

  33. Carlini C, Isola M, Liuzzo V, Galletti AMR, Sbrana G (2002) Appl Catal A: Gen 231:307–320

    Article  CAS  Google Scholar 

  34. Kim I, Kwak CH, Kim JS, Ha CS (2005) Appl Catal A: Gen 287:98–107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21576048) and Petroleum Innovation Foundation of China (No. 2014D-5006-0503) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui-Qin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CQ., Wang, FF., Gao, R. et al. Bidentate iron complexes based on hyperbranched salicylaldimine ligands and their catalytic behavior toward ethylene oligomerization. Transit Met Chem 42, 339–346 (2017). https://doi.org/10.1007/s11243-017-0137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-017-0137-9

Keywords

Navigation