Skip to main content
Log in

Iron and cobalt salicylaldimine complexes as catalysts for epoxide and carbon dioxide coupling: effects of substituents on catalytic activity

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The synthesis and characterization of substituted ONNO-donor salen-type Schiff base complexes of general formula [MIII(L)Cl] (L = Schiff base ligand, M = Fe, Co) is reported. The complexes have been applied as catalysts for the coupling of carbon dioxide and styrene oxide in the presence of tetrabutylammonium bromide as a co-catalyst. The reactions were carried out under relatively low-pressure and solvent-free conditions. The effects of the metal center, ligands, and various substituents on the peripheral sites of the ligand on the coupling reaction were investigated. The catalyst systems were found to be selective for the coupling of CO2 and styrene oxide, resulting in cyclic styrene carbonate. The cobalt(III) complex with no substituents on the ligand showed higher activity (TON = 1297) than the corresponding iron(III) complex (TON = 814); however, the iron(III)-based catalysts bearing electron-withdrawing substituents on the salen ligands (NEt3, TON = 1732) showed the highest catalytic activity under similar reaction conditions. The activity of one of the cobalt(III) complexes toward the coupling of 1-butene oxide, cyclohexene oxide and propylene oxide with CO2 was evaluated, revealing a notable activity for the coupling of 1-butene oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  1. Musie G, Wei M, Subramaniam B, Busch DH (2001) Coord Chem Rev 219:789

    Article  Google Scholar 

  2. Leitner W (1996) Coord Chem Rev 153:257

    Article  CAS  Google Scholar 

  3. Leitner W (1995) Angew Chem 107:2391

    Article  Google Scholar 

  4. Shi M, Shen YM (2003) Curr Org Chem 7:737

    Article  CAS  Google Scholar 

  5. Yin X, Moss JR (1999) Coord Chem Rev 181:27

    Article  CAS  Google Scholar 

  6. Gibson DH (1996) Chem Rev 96:2063

    Article  CAS  Google Scholar 

  7. Inoue S (1976) ChemTech 6:588

    CAS  Google Scholar 

  8. Darensbourg DJ, Holtcamp MW (1996) Coord Chem Rev 153:155

    Article  CAS  Google Scholar 

  9. Beckman EJ (1999) Science 283:946

    Article  CAS  Google Scholar 

  10. Darensbourg DJ (2007) Chem Rev 107:2388

    Article  CAS  Google Scholar 

  11. Klaus S, Lehenmeier MW, Anderson CE, Rieger B (2011) Coord Chem Rev 255:1460

    Article  CAS  Google Scholar 

  12. Coates GW, Moore DR (2004) Angew Chem Int Ed 43:6618

    Article  CAS  Google Scholar 

  13. Kember MR, Buchard A, Williams CK (2011) Chem Commun 47:141

    Article  CAS  Google Scholar 

  14. Decortes A, Castilla AM, Kleij AW (2010) Angew Chem Int Ed 49:9822

    Article  CAS  Google Scholar 

  15. Thorat SD, Phillips PJ, Semenov V, Gakh A (2003) J Appl Polym Sci 89:1163

    Article  CAS  Google Scholar 

  16. Liu B, Chen L, Zhang M, Yu A (2002) Macromol Rapid Commun 23:881

    Article  CAS  Google Scholar 

  17. Wang SJ, Du LC, Zhao XS, Meng YZ, Tjong SC (2002) J Appl Polym Sci 85:2327

    Article  CAS  Google Scholar 

  18. Wu X-M, Sun W, Xin J-Y, Xia C-G (2008) World J Microbiol Biotechnol 24:2421

    Article  CAS  Google Scholar 

  19. Srivastava R, Srinivas D, Ratnasamy P (2006) J Catal 241:34

    Article  CAS  Google Scholar 

  20. Shaikh A-AG, Sivaram S (1996) Chem Rev 96:951

    Article  CAS  Google Scholar 

  21. Chen S-W, Kawthekar RB, Kim G-J (2007) Tetrahedron Lett 48:297

    Article  CAS  Google Scholar 

  22. Paddock RL, Hiyama Y, Mckay JM, Nguyen ST (2004) Tetrahedron Lett 45:2023

    Article  CAS  Google Scholar 

  23. Darensbourg DJ, Mackiewicz RM (2005) J Am Chem Soc 127:14026

    Article  CAS  Google Scholar 

  24. Cohen CT, Chu T, Coates GW (2005) J Am Chem Soc 127:10869

    Article  CAS  Google Scholar 

  25. Bu Z, Wang Z, Yang L, Cao S (2011) App Organometal Chem 24:813

    Article  Google Scholar 

  26. Decortes A, Belmonte MM, Benet-Buchholz J, Kleij AW (2010) Chem Commun 46:4580

    Article  CAS  Google Scholar 

  27. Fujita S-I, Nishiura M, Arai M (2010) Catal Lett 135:263

    Article  CAS  Google Scholar 

  28. North M, Pasquale R (2009) Angew Chem Int Ed 48:2946

    Article  CAS  Google Scholar 

  29. Luinstra GA, Haas GR, Molnar F, Bernhart V, Eberhardt R, Rieger B (2005) Chem Eur J 11:6298

    Article  CAS  Google Scholar 

  30. Jing H, Edulji SK, Gibbs JM, Stern CL, Zhou H, Nguyen ST (2004) Inorg Chem 43:4315

    Article  CAS  Google Scholar 

  31. Kember MR, White AJP, Williams CK (2010) Macromolecules 43:2291

    Article  CAS  Google Scholar 

  32. Buchard A, Kember MR, Sandeman K, Williams CK (2011) Chem Commun 47:212–214

    Article  CAS  Google Scholar 

  33. Edulji SK, Nguyen ST (2004) Pure Appl Chem 76:645

    Article  CAS  Google Scholar 

  34. Dengler JE, Lehenmeier MW, Klaus S, Anderson CE, Herdtweck E, Rieger B (2011) Eur J Inorg Chem 336–343

  35. Al-Qaisi F, Genjang N, Nieger M, Repo T (2016) Inorg Chim Acta 442:81

    Article  CAS  Google Scholar 

  36. Sunjuk M, Abu-Surrah AS, Al-Ramahi E, Qaroush AK, Saleh A (2013) Transition Met Chem 38:253

    Article  CAS  Google Scholar 

  37. Cozzi P (2004) Chem Soc Rev 33:410

    Article  CAS  Google Scholar 

  38. Yliheikkilä K, Lappalainen K, Castro PM, Ibrahim K, Abu-Surrah AS, Leskelä M, Repo T (2006) Eur Polym J 42:92

    Article  Google Scholar 

  39. Lu X-B, Shi L, Wang Y-M, Zhang R, Zhang Y-J, Peng X-J, Zhan Z-C, Li B (2006) J Am Chem Soc 128:1664

    Article  CAS  Google Scholar 

  40. Nielsen LPC, Stevenson CP, Blackmond DG, Jacobsen EN (2004) J Am Chem Soc 126:1360

    Article  CAS  Google Scholar 

  41. Lu X-B, Feng X-J, He R (2002) Appl Catal A 234:25

    Article  CAS  Google Scholar 

  42. Wu G-P, Wei S-H, Lu X-B, Ren W-M, Darensbourg DJ (2010) Macromolecules 43:9202

    Article  CAS  Google Scholar 

  43. Sibaouih A, Ryan P, Axenov KV, Sundberg MR, Leskelä M, Repo T (2009) J Mol Cat A: Chem 312:87

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Hashemite University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan S. Abu-Surrah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Surrah, A.S., Abdel-Halim, H.M., Abu-Shehab, H.A.N. et al. Iron and cobalt salicylaldimine complexes as catalysts for epoxide and carbon dioxide coupling: effects of substituents on catalytic activity. Transit Met Chem 42, 117–122 (2017). https://doi.org/10.1007/s11243-016-0113-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-016-0113-9

Keywords

Navigation